{"title":"On the KPZ Scaling and the KPZ Fixed Point for TASEP","authors":"Yuta Arai","doi":"10.1007/s11040-024-09475-y","DOIUrl":null,"url":null,"abstract":"<div><p>We consider all totally asymmetric simple exclusion processes (TASEPs) whose transition probabilities are given by the Schütz-type formulas and which jump with homogeneous rates. We show that the multi-point distribution of particle positions and the KPZ scaling are described using the probability generating function of the rightmost particle’s jump. For all TASEPs satisfying certain assumptions, we also prove the pointwise convergence of the kernels appearing in the joint distribution of particle positions to those appearing in the KPZ fixed point formula. Our result generalizes the result of Matetski, Quastel, and Remenik [18] in the sense that we provide the KPZ fixed point formulation for a class of TASEPs, instead of for one specific TASEP.</p></div>","PeriodicalId":694,"journal":{"name":"Mathematical Physics, Analysis and Geometry","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Physics, Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s11040-024-09475-y","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We consider all totally asymmetric simple exclusion processes (TASEPs) whose transition probabilities are given by the Schütz-type formulas and which jump with homogeneous rates. We show that the multi-point distribution of particle positions and the KPZ scaling are described using the probability generating function of the rightmost particle’s jump. For all TASEPs satisfying certain assumptions, we also prove the pointwise convergence of the kernels appearing in the joint distribution of particle positions to those appearing in the KPZ fixed point formula. Our result generalizes the result of Matetski, Quastel, and Remenik [18] in the sense that we provide the KPZ fixed point formulation for a class of TASEPs, instead of for one specific TASEP.
期刊介绍:
MPAG is a peer-reviewed journal organized in sections. Each section is editorially independent and provides a high forum for research articles in the respective areas.
The entire editorial board commits itself to combine the requirements of an accurate and fast refereeing process.
The section on Probability and Statistical Physics focuses on probabilistic models and spatial stochastic processes arising in statistical physics. Examples include: interacting particle systems, non-equilibrium statistical mechanics, integrable probability, random graphs and percolation, critical phenomena and conformal theories. Applications of probability theory and statistical physics to other areas of mathematics, such as analysis (stochastic pde''s), random geometry, combinatorial aspects are also addressed.
The section on Quantum Theory publishes research papers on developments in geometry, probability and analysis that are relevant to quantum theory. Topics that are covered in this section include: classical and algebraic quantum field theories, deformation and geometric quantisation, index theory, Lie algebras and Hopf algebras, non-commutative geometry, spectral theory for quantum systems, disordered quantum systems (Anderson localization, quantum diffusion), many-body quantum physics with applications to condensed matter theory, partial differential equations emerging from quantum theory, quantum lattice systems, topological phases of matter, equilibrium and non-equilibrium quantum statistical mechanics, multiscale analysis, rigorous renormalisation group.