Programming Motion into Materials Using Electricity-Driven Liquid Crystal Elastomer Actuators.

Soft robotics Pub Date : 2024-06-01 Epub Date: 2024-01-23 DOI:10.1089/soro.2023.0063
Lin Xu, Chen Zhu, Samuel Lamont, Xiang Zou, Yabing Yang, Si Chen, Jianning Ding, Franck J Vernerey
{"title":"Programming Motion into Materials Using Electricity-Driven Liquid Crystal Elastomer Actuators.","authors":"Lin Xu, Chen Zhu, Samuel Lamont, Xiang Zou, Yabing Yang, Si Chen, Jianning Ding, Franck J Vernerey","doi":"10.1089/soro.2023.0063","DOIUrl":null,"url":null,"abstract":"<p><p>As thermally driven smart materials capable of large reversible deformations, liquid crystal elastomers (LCEs) have great potential for applications in bionic soft robots, artificial muscles, controllable actuators, and flexible sensors due to their ability to program controllable motion into materials. In this article, we introduce conductive LCE actuators using a liquid metal electrothermal layer and a polyethylene terephthalate substrate. Our LCE actuators can be stimulated at low currents from 2 to 4 A and produce a maximum work density of 9.4 <math><mstyle><mi>k</mi><mi>J</mi></mstyle><mo>∕</mo><msup><mrow><mstyle><mi>m</mi></mstyle></mrow><mrow><mn>3</mn></mrow></msup></math>. We illustrate the potential applications of this system by designing a palm-activated artificial muscle gripper, which can be used to grasp soft objects ranging from 5 to 55 mm in size, and even ring-shaped workpieces with precise external or internal support. Furthermore, inspired by the movement of fruit fly larvae, we designed a new soft robot capable of bioinspired crawling and turning by inducing anisotropic friction with an asymmetric design. Finally, we illustrate advanced motional control by designing an autonomously rotating wheel based on the asymmetric contraction of its spokes. To assist in the production of autonomously moving robots, we provide a thorough characterization of its motion dynamics.</p>","PeriodicalId":94210,"journal":{"name":"Soft robotics","volume":" ","pages":"464-472"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/soro.2023.0063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/23 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

As thermally driven smart materials capable of large reversible deformations, liquid crystal elastomers (LCEs) have great potential for applications in bionic soft robots, artificial muscles, controllable actuators, and flexible sensors due to their ability to program controllable motion into materials. In this article, we introduce conductive LCE actuators using a liquid metal electrothermal layer and a polyethylene terephthalate substrate. Our LCE actuators can be stimulated at low currents from 2 to 4 A and produce a maximum work density of 9.4 kJm3. We illustrate the potential applications of this system by designing a palm-activated artificial muscle gripper, which can be used to grasp soft objects ranging from 5 to 55 mm in size, and even ring-shaped workpieces with precise external or internal support. Furthermore, inspired by the movement of fruit fly larvae, we designed a new soft robot capable of bioinspired crawling and turning by inducing anisotropic friction with an asymmetric design. Finally, we illustrate advanced motional control by designing an autonomously rotating wheel based on the asymmetric contraction of its spokes. To assist in the production of autonomously moving robots, we provide a thorough characterization of its motion dynamics.

利用电驱动液晶弹性体致动器将运动编程到材料中
液晶弹性体(LCE)是一种热驱动智能材料,能够产生较大的可逆变形,由于其能够将可控运动编程到材料中,因此在仿生软机器人、人造肌肉、可控致动器和柔性传感器等领域具有巨大的应用潜力。在本文中,我们介绍了使用液态金属电热层和聚对苯二甲酸乙二醇酯基底的导电 LCE 执行器。我们的 LCE 激励器可在 2 到 4 A 的低电流下激励,并产生 9.4 kJ∕m3 的最大功密度。我们通过设计一种手掌激活的人工肌肉抓手来说明该系统的潜在应用,它可用于抓取大小从 5 毫米到 55 毫米不等的软性物体,甚至是具有精确外部或内部支撑的环形工件。此外,受果蝇幼虫运动的启发,我们设计了一种新型软体机器人,它能够通过非对称设计诱导各向异性摩擦,实现生物启发的爬行和转弯。最后,我们根据轮辐的非对称收缩设计了一个自主旋转车轮,从而展示了先进的运动控制。为了帮助生产自主移动机器人,我们对其运动动力学进行了全面描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
文献相关原料
公司名称
产品信息
麦克林
toluene
阿拉丁
pentaerythritol tetrakis (3-mercaptopropionate)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信