Gen Ohara;Daiki Kikuchi;Masashi Konyo;Satoshi Tadokoro
{"title":"Stereohaptic Vibration: Out-of-Body Localization of Virtual Vibration Source Through Multiple Vibrotactile Stimuli on the Forearms","authors":"Gen Ohara;Daiki Kikuchi;Masashi Konyo;Satoshi Tadokoro","doi":"10.1109/TOH.2024.3357574","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel concept of “stereohaptic vibration,” which employs distributed vibration to localize vibration sources outside the body. Inspired by amplitude panning, a stereophonic sound display technique, we developed a method to localize a virtual vibration source (VVS) by polarizing the perceived intensity of multiple vibration stimuli to a specific orientation. Considering the perceptual characteristics of high-frequency vibration, the perceived intensity of the VVS was allocated to multiple vibrators according to the distance and direction of the target. The velocity discrimination performance was confirmed by utilizing four stimuli around the arm and one vibration stimulus to the palm to localize the movement of a VVS throughout the arm. Discrimination experiments of the trajectory of outgoing objects with a single arm and dual arms revealed that our approach could localize in three dimensions, even outside the body. The proposed technology for localizing external virtual vibration sources is expected to enhance the virtual reality experience.","PeriodicalId":13215,"journal":{"name":"IEEE Transactions on Haptics","volume":"17 1","pages":"86-91"},"PeriodicalIF":2.4000,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Haptics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10413342/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper proposes a novel concept of “stereohaptic vibration,” which employs distributed vibration to localize vibration sources outside the body. Inspired by amplitude panning, a stereophonic sound display technique, we developed a method to localize a virtual vibration source (VVS) by polarizing the perceived intensity of multiple vibration stimuli to a specific orientation. Considering the perceptual characteristics of high-frequency vibration, the perceived intensity of the VVS was allocated to multiple vibrators according to the distance and direction of the target. The velocity discrimination performance was confirmed by utilizing four stimuli around the arm and one vibration stimulus to the palm to localize the movement of a VVS throughout the arm. Discrimination experiments of the trajectory of outgoing objects with a single arm and dual arms revealed that our approach could localize in three dimensions, even outside the body. The proposed technology for localizing external virtual vibration sources is expected to enhance the virtual reality experience.
期刊介绍:
IEEE Transactions on Haptics (ToH) is a scholarly archival journal that addresses the science, technology, and applications associated with information acquisition and object manipulation through touch. Haptic interactions relevant to this journal include all aspects of manual exploration and manipulation of objects by humans, machines and interactions between the two, performed in real, virtual, teleoperated or networked environments. Research areas of relevance to this publication include, but are not limited to, the following topics: Human haptic and multi-sensory perception and action, Aspects of motor control that explicitly pertain to human haptics, Haptic interactions via passive or active tools and machines, Devices that sense, enable, or create haptic interactions locally or at a distance, Haptic rendering and its association with graphic and auditory rendering in virtual reality, Algorithms, controls, and dynamics of haptic devices, users, and interactions between the two, Human-machine performance and safety with haptic feedback, Haptics in the context of human-computer interactions, Systems and networks using haptic devices and interactions, including multi-modal feedback, Application of the above, for example in areas such as education, rehabilitation, medicine, computer-aided design, skills training, computer games, driver controls, simulation, and visualization.