{"title":"The assessment of implant shape-dependent failure mechanisms in primary total hip arthroplasty using finite element analysis.","authors":"Siavash Kazemirad, Mohammad Ali Yazdi","doi":"10.1080/10255842.2023.2301676","DOIUrl":null,"url":null,"abstract":"<p><p>The three mechanisms known to be responsible for the failure of uncemented femoral stems in primary total hip arthroplasty (THA) are the stress shielding, excessive bone-implant interface stress, and excessive initial micromotion. Since implant designers usually have to sacrifice two mechanisms to improve the other one, the aim of this study was to assess which of them plays a more important role in the failure of uncemented stems. Two hip implant stems which are widely used in the primary THA and their mid-term clinical outcomes are available, were selected. Then, the amount of the three failure mechanisms created by each stem during the normal walking gait cycle was determined for a 70 kg female patient using the finite element method. The results indicated that the stem with better clinical outcome induced an average of 36.6% less stress shielding in the proximal regions of femur bone compared with the other stem. However, the maximum bone-implant interface stress and maximum initial micromotion were, respectively, 30 and 155% higher for the stem with better clinical outcomes. It was therefore concluded that the stress shielding has a more significant impact on the mid-term life of uncemented stems. However, care must be taken to ensure that the other two failure mechanisms do not exceed a certain threshold. It was also observed that the thinner and shorter stem created a smaller amount of stress shielding in the femur bone. The outcomes of this study can be used to design new hip implant stems that can potentially last longer.</p>","PeriodicalId":50640,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering","volume":" ","pages":"750-763"},"PeriodicalIF":1.7000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Biomechanics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10255842.2023.2301676","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/22 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The three mechanisms known to be responsible for the failure of uncemented femoral stems in primary total hip arthroplasty (THA) are the stress shielding, excessive bone-implant interface stress, and excessive initial micromotion. Since implant designers usually have to sacrifice two mechanisms to improve the other one, the aim of this study was to assess which of them plays a more important role in the failure of uncemented stems. Two hip implant stems which are widely used in the primary THA and their mid-term clinical outcomes are available, were selected. Then, the amount of the three failure mechanisms created by each stem during the normal walking gait cycle was determined for a 70 kg female patient using the finite element method. The results indicated that the stem with better clinical outcome induced an average of 36.6% less stress shielding in the proximal regions of femur bone compared with the other stem. However, the maximum bone-implant interface stress and maximum initial micromotion were, respectively, 30 and 155% higher for the stem with better clinical outcomes. It was therefore concluded that the stress shielding has a more significant impact on the mid-term life of uncemented stems. However, care must be taken to ensure that the other two failure mechanisms do not exceed a certain threshold. It was also observed that the thinner and shorter stem created a smaller amount of stress shielding in the femur bone. The outcomes of this study can be used to design new hip implant stems that can potentially last longer.
期刊介绍:
The primary aims of Computer Methods in Biomechanics and Biomedical Engineering are to provide a means of communicating the advances being made in the areas of biomechanics and biomedical engineering and to stimulate interest in the continually emerging computer based technologies which are being applied in these multidisciplinary subjects. Computer Methods in Biomechanics and Biomedical Engineering will also provide a focus for the importance of integrating the disciplines of engineering with medical technology and clinical expertise. Such integration will have a major impact on health care in the future.