{"title":"Quantum information processing in electrically defined Silicon triple quantum dot systems","authors":"Ji-Hoon Kang, Hoon Ryu","doi":"10.1016/j.sse.2024.108863","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Quantum bits (qubits) operations in electrically defined </span>Silicon<span> (Si) triple quantum dots (TQDs) are computationally investigated to elevate the potential of TQD structure as a platform for quantum information processing. Employing a realistic Si</span></span><span><math><mo>/</mo></math></span><span><span><span>Si-germanium heterostructure as a target model, device simulations are conducted to secure an initialized qubit state. Basic </span>programmability is verified through implementation of individual qubit operations and 2-qubit entangling operations between neighboring QDs. Constructing a gate sequence composed of 1-qubit and 2-qubit blocks, then, we not only generate three-qubit Greenberger–Horne–Zeilinger state, but also quantify the degradation of state fidelity under the inevitable inaccuracy which are incorporated in the dominant factors of spin-qubit </span>Hamiltonian<span>. Presenting engineering details that are hard to be carried by simulations based on the first principle theory, this work can be served as a practical guideline for designs of scalable quantum processors with electron spin-qubits in Si QD platforms.</span></span></p></div>","PeriodicalId":21909,"journal":{"name":"Solid-state Electronics","volume":"213 ","pages":"Article 108863"},"PeriodicalIF":1.4000,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid-state Electronics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038110124000121","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Quantum bits (qubits) operations in electrically defined Silicon (Si) triple quantum dots (TQDs) are computationally investigated to elevate the potential of TQD structure as a platform for quantum information processing. Employing a realistic SiSi-germanium heterostructure as a target model, device simulations are conducted to secure an initialized qubit state. Basic programmability is verified through implementation of individual qubit operations and 2-qubit entangling operations between neighboring QDs. Constructing a gate sequence composed of 1-qubit and 2-qubit blocks, then, we not only generate three-qubit Greenberger–Horne–Zeilinger state, but also quantify the degradation of state fidelity under the inevitable inaccuracy which are incorporated in the dominant factors of spin-qubit Hamiltonian. Presenting engineering details that are hard to be carried by simulations based on the first principle theory, this work can be served as a practical guideline for designs of scalable quantum processors with electron spin-qubits in Si QD platforms.
期刊介绍:
It is the aim of this journal to bring together in one publication outstanding papers reporting new and original work in the following areas: (1) applications of solid-state physics and technology to electronics and optoelectronics, including theory and device design; (2) optical, electrical, morphological characterization techniques and parameter extraction of devices; (3) fabrication of semiconductor devices, and also device-related materials growth, measurement and evaluation; (4) the physics and modeling of submicron and nanoscale microelectronic and optoelectronic devices, including processing, measurement, and performance evaluation; (5) applications of numerical methods to the modeling and simulation of solid-state devices and processes; and (6) nanoscale electronic and optoelectronic devices, photovoltaics, sensors, and MEMS based on semiconductor and alternative electronic materials; (7) synthesis and electrooptical properties of materials for novel devices.