{"title":"Multimodal feature fusion in deep learning for comprehensive dental condition classification.","authors":"Shang-Ting Hsieh, Ya-Ai Cheng","doi":"10.3233/XST-230271","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Dental health issues are on the rise, necessitating prompt and precise diagnosis. Automated dental condition classification can support this need.</p><p><strong>Objective: </strong>The study aims to evaluate the effectiveness of deep learning methods and multimodal feature fusion techniques in advancing the field of automated dental condition classification.</p><p><strong>Methods and materials: </strong>A dataset of 11,653 clinically sourced images representing six prevalent dental conditions-caries, calculus, gingivitis, tooth discoloration, ulcers, and hypodontia-was utilized. Features were extracted using five Convolutional Neural Network (CNN) models, then fused into a matrix. Classification models were constructed using Support Vector Machines (SVM) and Naive Bayes classifiers. Evaluation metrics included accuracy, recall rate, precision, and Kappa index.</p><p><strong>Results: </strong>The SVM classifier integrated with feature fusion demonstrated superior performance with a Kappa index of 0.909 and accuracy of 0.925. This significantly surpassed individual CNN models such as EfficientNetB0, which achieved a Kappa of 0.814 and accuracy of 0.847.</p><p><strong>Conclusions: </strong>The amalgamation of feature fusion with advanced machine learning algorithms can significantly bolster the precision and robustness of dental condition classification systems. Such a method presents a valuable tool for dental professionals, facilitating enhanced diagnostic accuracy and subsequently improved patient outcomes.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3233/XST-230271","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Dental health issues are on the rise, necessitating prompt and precise diagnosis. Automated dental condition classification can support this need.
Objective: The study aims to evaluate the effectiveness of deep learning methods and multimodal feature fusion techniques in advancing the field of automated dental condition classification.
Methods and materials: A dataset of 11,653 clinically sourced images representing six prevalent dental conditions-caries, calculus, gingivitis, tooth discoloration, ulcers, and hypodontia-was utilized. Features were extracted using five Convolutional Neural Network (CNN) models, then fused into a matrix. Classification models were constructed using Support Vector Machines (SVM) and Naive Bayes classifiers. Evaluation metrics included accuracy, recall rate, precision, and Kappa index.
Results: The SVM classifier integrated with feature fusion demonstrated superior performance with a Kappa index of 0.909 and accuracy of 0.925. This significantly surpassed individual CNN models such as EfficientNetB0, which achieved a Kappa of 0.814 and accuracy of 0.847.
Conclusions: The amalgamation of feature fusion with advanced machine learning algorithms can significantly bolster the precision and robustness of dental condition classification systems. Such a method presents a valuable tool for dental professionals, facilitating enhanced diagnostic accuracy and subsequently improved patient outcomes.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.