A183.4-nJ/Inference 152.8-μW 35-Voice Commands Recognition Wired-Logic Processor Using Algorithm-Circuit Co-Optimization Technique

IF 2.2 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Rei Sumikawa;Atsutake Kosuge;Yao-Chung Hsu;Kota Shiba;Mototsugu Hamada;Tadahiro Kuroda
{"title":"A183.4-nJ/Inference 152.8-μW 35-Voice Commands Recognition Wired-Logic Processor Using Algorithm-Circuit Co-Optimization Technique","authors":"Rei Sumikawa;Atsutake Kosuge;Yao-Chung Hsu;Kota Shiba;Mototsugu Hamada;Tadahiro Kuroda","doi":"10.1109/LSSC.2023.3334625","DOIUrl":null,"url":null,"abstract":"A 183.4-nJ/inference single-chip wired-logic DNN processor that is capable of recognizing all 35 commands defined in the industrial standard voice recognition data set (Google speech command dataset) is developed. The algorithm-circuit co-optimized processor recognizes 3.5 times more commands with 1.6 times better-energy efficiency than the state-of-the-art analog processor while keeping design cost low. By implementing all the processing circuits and wiring required for the 16-layer DNN onto a single chip (\n<inline-formula> <tex-math>$7.63 {\\mathrm{ mm}}^{2}$ </tex-math></inline-formula>\n in 40 nm), the need to store weight coefficients and intermediate data in DRAM/SRAM is eliminated. Owing to the proposed architecture, a low-power consumption of \n<inline-formula> <tex-math>$152.8 \\mu \\text{W}$ </tex-math></inline-formula>\n is achieved, which is low enough for always-on applications on battery-powered IoT devices.","PeriodicalId":13032,"journal":{"name":"IEEE Solid-State Circuits Letters","volume":"7 ","pages":"22-25"},"PeriodicalIF":2.2000,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Solid-State Circuits Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10324346/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

A 183.4-nJ/inference single-chip wired-logic DNN processor that is capable of recognizing all 35 commands defined in the industrial standard voice recognition data set (Google speech command dataset) is developed. The algorithm-circuit co-optimized processor recognizes 3.5 times more commands with 1.6 times better-energy efficiency than the state-of-the-art analog processor while keeping design cost low. By implementing all the processing circuits and wiring required for the 16-layer DNN onto a single chip ( $7.63 {\mathrm{ mm}}^{2}$ in 40 nm), the need to store weight coefficients and intermediate data in DRAM/SRAM is eliminated. Owing to the proposed architecture, a low-power consumption of $152.8 \mu \text{W}$ is achieved, which is low enough for always-on applications on battery-powered IoT devices.
采用算法-电路协同优化技术的 A183.4-nJ/Inference 152.8-μW 35 语音命令识别有线逻辑处理器
我们开发了一个 183.4-nJ/inference 的单芯片有线逻辑 DNN 处理器,它能够识别工业标准语音识别数据集(谷歌语音命令数据集)中定义的所有 35 个命令。与最先进的模拟处理器相比,经过算法和电路共同优化的处理器可识别的命令数量增加了 3.5 倍,能效提高了 1.6 倍,同时保持了较低的设计成本。通过在单个芯片上实现 16 层 DNN 所需的所有处理电路和布线(7.63 {mathrm{ mm}}^{2}$,40 纳米),无需在 DRAM/SRAM 中存储权重系数和中间数据。由于采用了所提出的架构,实现了 152.8 \mu \text{W}$的低功耗,这对于电池供电的物联网设备上的始终在线应用来说已经足够低了。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Solid-State Circuits Letters
IEEE Solid-State Circuits Letters Engineering-Electrical and Electronic Engineering
CiteScore
4.30
自引率
3.70%
发文量
52
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信