{"title":"Investigating the Effects of Intensity and Frequency on Vibrotactile Spatial Acuity","authors":"Bingjian Huang;Paul H. Dietz;Daniel Wigdor","doi":"10.1109/TOH.2024.3350929","DOIUrl":null,"url":null,"abstract":"Vibrotactile devices are commonly used in applications for sensory substitution or to provide feedback in virtual reality. An important aspect of vibrotactile perception is spatial acuity, which determines the resolutions of vibrotactile displays on the skin. However, the complex vibration characteristics of vibrotactile actuators make it challenging for researchers to reference and compare previous study results. This is because the effects of typical characteristics, such as intensity and frequency, are not well understood. In this study, we investigated the effects of intensity and frequency on vibrotactile spatial acuity. Using Linear Resonant Actuators (LRAs), we conducted relative point localization experiments to measure spatial acuity under different conditions. In the first experiment, we found that intensity had a significant effect on spatial acuity, with higher intensity leading to better acuity. In the second experiment, using a carefully designed intensity calibration procedure, we did not find a significant effect of frequency on spatial acuity. These findings provide a better understanding of vibrotactile spatial acuity, allow for comparisons to previous research, and provide insights into the design of future tactile devices.","PeriodicalId":13215,"journal":{"name":"IEEE Transactions on Haptics","volume":"17 3","pages":"405-416"},"PeriodicalIF":2.4000,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Haptics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10384555/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
引用次数: 0
Abstract
Vibrotactile devices are commonly used in applications for sensory substitution or to provide feedback in virtual reality. An important aspect of vibrotactile perception is spatial acuity, which determines the resolutions of vibrotactile displays on the skin. However, the complex vibration characteristics of vibrotactile actuators make it challenging for researchers to reference and compare previous study results. This is because the effects of typical characteristics, such as intensity and frequency, are not well understood. In this study, we investigated the effects of intensity and frequency on vibrotactile spatial acuity. Using Linear Resonant Actuators (LRAs), we conducted relative point localization experiments to measure spatial acuity under different conditions. In the first experiment, we found that intensity had a significant effect on spatial acuity, with higher intensity leading to better acuity. In the second experiment, using a carefully designed intensity calibration procedure, we did not find a significant effect of frequency on spatial acuity. These findings provide a better understanding of vibrotactile spatial acuity, allow for comparisons to previous research, and provide insights into the design of future tactile devices.
期刊介绍:
IEEE Transactions on Haptics (ToH) is a scholarly archival journal that addresses the science, technology, and applications associated with information acquisition and object manipulation through touch. Haptic interactions relevant to this journal include all aspects of manual exploration and manipulation of objects by humans, machines and interactions between the two, performed in real, virtual, teleoperated or networked environments. Research areas of relevance to this publication include, but are not limited to, the following topics: Human haptic and multi-sensory perception and action, Aspects of motor control that explicitly pertain to human haptics, Haptic interactions via passive or active tools and machines, Devices that sense, enable, or create haptic interactions locally or at a distance, Haptic rendering and its association with graphic and auditory rendering in virtual reality, Algorithms, controls, and dynamics of haptic devices, users, and interactions between the two, Human-machine performance and safety with haptic feedback, Haptics in the context of human-computer interactions, Systems and networks using haptic devices and interactions, including multi-modal feedback, Application of the above, for example in areas such as education, rehabilitation, medicine, computer-aided design, skills training, computer games, driver controls, simulation, and visualization.