Bi-directional threshold voltage shift of amorphous InGaZnO thin film transistors under alternating bias stress

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Hyunjin Kim, Beom Jung Kim, Jungyeop Oh, Sung-Yool Choi, Hamin Park
{"title":"Bi-directional threshold voltage shift of amorphous InGaZnO thin film transistors under alternating bias stress","authors":"Hyunjin Kim, Beom Jung Kim, Jungyeop Oh, Sung-Yool Choi, Hamin Park","doi":"10.1088/1361-6641/ad1b15","DOIUrl":null,"url":null,"abstract":"\n Amorphous InGaZnO (a-IGZO) has attracted a lot of attention as a high-mobility channel material for thin film transistors (TFTs). However, the instability mechanism involving threshold voltage and subthreshold swing in a-IGZO TFTs still requires further investigation. In this study, we investigated the electrical instability of amorphous InGaZnO thin film transistors subjected to alternating positive and negative bias stresses. Based on the respective mechanisms under positive and negative bias stresses, including ionization and spatial movement of oxygen vacancies, bi-directional threshold voltage shifts were observed under alternating bias stress. The subthreshold swing values vary with the bias stress polarity, reflecting the presence and distribution of oxygen vacancies. Our findings reveal a complementary mechanism based on oxygen vacancies, elucidating the behavior under complex bias stress schemes and extending our understanding of instability mechanisms beyond monotonous bias stress.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6641/ad1b15","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Amorphous InGaZnO (a-IGZO) has attracted a lot of attention as a high-mobility channel material for thin film transistors (TFTs). However, the instability mechanism involving threshold voltage and subthreshold swing in a-IGZO TFTs still requires further investigation. In this study, we investigated the electrical instability of amorphous InGaZnO thin film transistors subjected to alternating positive and negative bias stresses. Based on the respective mechanisms under positive and negative bias stresses, including ionization and spatial movement of oxygen vacancies, bi-directional threshold voltage shifts were observed under alternating bias stress. The subthreshold swing values vary with the bias stress polarity, reflecting the presence and distribution of oxygen vacancies. Our findings reveal a complementary mechanism based on oxygen vacancies, elucidating the behavior under complex bias stress schemes and extending our understanding of instability mechanisms beyond monotonous bias stress.
交变偏压应力下非晶 InGaZnO 薄膜晶体管的双向阈值电压偏移
非晶 InGaZnO(a-IGZO)作为薄膜晶体管(TFT)的高迁移率沟道材料,已经引起了广泛关注。然而,a-IGZO TFT 中涉及阈值电压和阈下摆动的不稳定机制仍有待进一步研究。在本研究中,我们研究了非晶 InGaZnO 薄膜晶体管在交变正负偏压应力作用下的电不稳定性。根据正负偏压下的各自机制,包括氧空位的电离和空间移动,我们观察到交变偏压下的双向阈值电压偏移。阈下摆动值随偏压极性而变化,反映了氧空位的存在和分布。我们的研究结果揭示了一种基于氧空位的互补机制,阐明了复杂偏压方案下的行为,并扩展了我们对单调偏压之外不稳定机制的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信