Gamma Irradiation Promotes the Growth Rate of Thai Pigmented Rice As Well As Inducing the Accumulation of Bioactive Compounds and Carbohydrate Hydrolyzing Enzymes Inhibitors (α-Glucosidase and α-Amylase) under Salt Conditions.
{"title":"Gamma Irradiation Promotes the Growth Rate of Thai Pigmented Rice As Well As Inducing the Accumulation of Bioactive Compounds and Carbohydrate Hydrolyzing Enzymes Inhibitors (α-Glucosidase and α-Amylase) under Salt Conditions.","authors":"Manatchanok Kongdin, Saowapa Chumanee, Sompong Sansenya","doi":"10.3746/pnf.2023.28.4.463","DOIUrl":null,"url":null,"abstract":"<p><p>Rice contains many bioactive compounds that perform various biological activities. Some of these compounds have been identified as α-glucosidase and α-amylase inhibitors, including guaiacol, vanillin, methyl vanillate, vanillic acid, syringic acid, and 2-pentyl furan. In this study, we assessed the growth rate, photosynthetic pigment content, phenolic content, and flavonoid content of gamma-irradiated Thai pigmented rice. Bioactive components of gamma-irradiated rice that had been subjected to salt treatment were also investigated. The findings showed that production of photosynthetic pigments, which are associated with plant growth, was induced by low gamma exposure. Phenolic and flavonoid content of rice was increased after gamma irradiation at 5 to 1,000 Gy. Both gamma irradiation and the salt conditions changed the quantity of vanillin, methyl vanillate, and vanillic acid in the rice. However, at a salt concentration of 40 mM, the salt stress had more of an effect than the gamma dosage. However, the high concentrations of methyl vanillate and vanillic acid detected in the rice under salt conditions were ameliorated by gamma irradiation. Guaiacol served as the substrate of guaiacol peroxidase for catalyzed reactive oxygen species, as evidenced by the observation that the guaiacol content of rice decreased between increased gamma dosages. A gamma dose of 40 to 1,000 Gy resulted in the production of syringic acid. Under salt stress, syringic acid buildup was also seen to be ameliorated by gamma irradiation. In comparison to salt conditions, particularly for 20 mM salt, gamma irradiation had less of an impact on the 2-pentyl furan in rice.</p>","PeriodicalId":20424,"journal":{"name":"Preventive Nutrition and Food Science","volume":"28 4","pages":"463-470"},"PeriodicalIF":1.6000,"publicationDate":"2023-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10764221/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Preventive Nutrition and Food Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3746/pnf.2023.28.4.463","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Rice contains many bioactive compounds that perform various biological activities. Some of these compounds have been identified as α-glucosidase and α-amylase inhibitors, including guaiacol, vanillin, methyl vanillate, vanillic acid, syringic acid, and 2-pentyl furan. In this study, we assessed the growth rate, photosynthetic pigment content, phenolic content, and flavonoid content of gamma-irradiated Thai pigmented rice. Bioactive components of gamma-irradiated rice that had been subjected to salt treatment were also investigated. The findings showed that production of photosynthetic pigments, which are associated with plant growth, was induced by low gamma exposure. Phenolic and flavonoid content of rice was increased after gamma irradiation at 5 to 1,000 Gy. Both gamma irradiation and the salt conditions changed the quantity of vanillin, methyl vanillate, and vanillic acid in the rice. However, at a salt concentration of 40 mM, the salt stress had more of an effect than the gamma dosage. However, the high concentrations of methyl vanillate and vanillic acid detected in the rice under salt conditions were ameliorated by gamma irradiation. Guaiacol served as the substrate of guaiacol peroxidase for catalyzed reactive oxygen species, as evidenced by the observation that the guaiacol content of rice decreased between increased gamma dosages. A gamma dose of 40 to 1,000 Gy resulted in the production of syringic acid. Under salt stress, syringic acid buildup was also seen to be ameliorated by gamma irradiation. In comparison to salt conditions, particularly for 20 mM salt, gamma irradiation had less of an impact on the 2-pentyl furan in rice.