Decomposition iteration strategy for low-dose CT denoising.

IF 1.7 3区 医学 Q3 INSTRUMENTS & INSTRUMENTATION
Zhiyuan Li, Yi Liu, Pengcheng Zhang, Jing Lu, Zhiguo Gui
{"title":"Decomposition iteration strategy for low-dose CT denoising.","authors":"Zhiyuan Li, Yi Liu, Pengcheng Zhang, Jing Lu, Zhiguo Gui","doi":"10.3233/XST-230272","DOIUrl":null,"url":null,"abstract":"<p><p>In the medical field, computed tomography (CT) is a commonly used examination method, but the radiation generated increases the risk of illness in patients. Therefore, low-dose scanning schemes have attracted attention, in which noise reduction is essential. We propose a purposeful and interpretable decomposition iterative network (DISN) for low-dose CT denoising. This method aims to make the network design interpretable and improve the fidelity of details, rather than blindly designing or using deep CNN architecture. The experiment is trained and tested on multiple data sets. The results show that the DISN method can restore the low-dose CT image structure and improve the diagnostic performance when the image details are limited. Compared with other algorithms, DISN has better quantitative and visual performance, and has potential clinical application prospects.</p>","PeriodicalId":49948,"journal":{"name":"Journal of X-Ray Science and Technology","volume":" ","pages":"493-512"},"PeriodicalIF":1.7000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of X-Ray Science and Technology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3233/XST-230272","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

In the medical field, computed tomography (CT) is a commonly used examination method, but the radiation generated increases the risk of illness in patients. Therefore, low-dose scanning schemes have attracted attention, in which noise reduction is essential. We propose a purposeful and interpretable decomposition iterative network (DISN) for low-dose CT denoising. This method aims to make the network design interpretable and improve the fidelity of details, rather than blindly designing or using deep CNN architecture. The experiment is trained and tested on multiple data sets. The results show that the DISN method can restore the low-dose CT image structure and improve the diagnostic performance when the image details are limited. Compared with other algorithms, DISN has better quantitative and visual performance, and has potential clinical application prospects.

用于低剂量 CT 去噪的分解迭代策略
在医疗领域,计算机断层扫描(CT)是一种常用的检查方法,但其产生的辐射会增加患者患病的风险。因此,低剂量扫描方案备受关注,其中降噪至关重要。我们提出了一种用于低剂量 CT 去噪的目的明确、可解释的分解迭代网络(DISN)。这种方法旨在使网络设计具有可解释性,并提高细节的保真度,而不是盲目设计或使用深度 CNN 架构。实验在多个数据集上进行了训练和测试。结果表明,当图像细节有限时,DISN 方法能还原低剂量 CT 图像结构,提高诊断性能。与其他算法相比,DISN具有更好的定量和视觉性能,具有潜在的临床应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.90
自引率
23.30%
发文量
150
审稿时长
3 months
期刊介绍: Research areas within the scope of the journal include: Interaction of x-rays with matter: x-ray phenomena, biological effects of radiation, radiation safety and optical constants X-ray sources: x-rays from synchrotrons, x-ray lasers, plasmas, and other sources, conventional or unconventional Optical elements: grazing incidence optics, multilayer mirrors, zone plates, gratings, other diffraction optics Optical instruments: interferometers, spectrometers, microscopes, telescopes, microprobes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信