In vitro evaluation of nanocomposites of linseed mucilage and k-carrageenan loaded with Achyrocline satureioides nanoemulsion: a gradual-release candidate of antimicrobials for the treatment of bovine mastitis.
IF 1.6 3区 农林科学Q2 AGRICULTURE, DAIRY & ANIMAL SCIENCE
Gabriela Tasso Pinheiro Machado, Roberto Gabriel Ferreira, Maria Beatriz Veleirinho, Luciana Aparecida Honorato, Roberta de Oliveira Ramos, Marcos Antônio Segatto Silva, Shirley Kuhnen
{"title":"In vitro evaluation of nanocomposites of linseed mucilage and k-carrageenan loaded with <i>Achyrocline satureioides</i> nanoemulsion: a gradual-release candidate of antimicrobials for the treatment of bovine mastitis.","authors":"Gabriela Tasso Pinheiro Machado, Roberto Gabriel Ferreira, Maria Beatriz Veleirinho, Luciana Aparecida Honorato, Roberta de Oliveira Ramos, Marcos Antônio Segatto Silva, Shirley Kuhnen","doi":"10.1017/S002202992300064X","DOIUrl":null,"url":null,"abstract":"<p><p>This research paper presents the development and evaluation of pioneering nanocomposites (NCs) based on the combination of k-carrageenan and linseed mucilage. When loaded with macela extract nanoemulsion they present an innovative approach for the sustained release of antimicrobial herbal constituents, specifically tailored for bovine mastitis treatment. The NCs, encompassing various ratios of k-carrageenan and linseed mucilage polymers (8:2, 7:3, and 5:5 w/w) with 1.25 mg of macela extract/g of gel, underwent in vitro assessment, emphasizing viscosity, degradation speed, release of herbal actives from macela nanoemulsion and antimicrobial activity. The NCs exhibited thermoreversible characteristics, transitioning from liquid at 60°C to a gel at 25°C. NCs allowed a gradual release of phenolic compounds, reaching approximately 80% of total phenolics release (w/v) within 72 h. NCs inhibited the growth of MRSA (ATCC 33592) until 8 h of incubation. No toxic effect in vitro of NCs was found on MAC-T cells. Thus, the developed materials are relevant for the treatment of bovine mastitis, especially in the dry period, and the data support future evaluations in vivo.</p>","PeriodicalId":15615,"journal":{"name":"Journal of Dairy Research","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Dairy Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1017/S002202992300064X","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/8 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
This research paper presents the development and evaluation of pioneering nanocomposites (NCs) based on the combination of k-carrageenan and linseed mucilage. When loaded with macela extract nanoemulsion they present an innovative approach for the sustained release of antimicrobial herbal constituents, specifically tailored for bovine mastitis treatment. The NCs, encompassing various ratios of k-carrageenan and linseed mucilage polymers (8:2, 7:3, and 5:5 w/w) with 1.25 mg of macela extract/g of gel, underwent in vitro assessment, emphasizing viscosity, degradation speed, release of herbal actives from macela nanoemulsion and antimicrobial activity. The NCs exhibited thermoreversible characteristics, transitioning from liquid at 60°C to a gel at 25°C. NCs allowed a gradual release of phenolic compounds, reaching approximately 80% of total phenolics release (w/v) within 72 h. NCs inhibited the growth of MRSA (ATCC 33592) until 8 h of incubation. No toxic effect in vitro of NCs was found on MAC-T cells. Thus, the developed materials are relevant for the treatment of bovine mastitis, especially in the dry period, and the data support future evaluations in vivo.
期刊介绍:
The Journal of Dairy Research is an international Journal of high-standing that publishes original scientific research on all aspects of the biology, wellbeing and technology of lactating animals and the foods they produce. The Journal’s ability to cover the entire dairy foods chain is a major strength. Cross-disciplinary research is particularly welcomed, as is comparative lactation research in different dairy and non-dairy species and research dealing with consumer health aspects of dairy products. Journal of Dairy Research: an international Journal of the lactation sciences.