Gold nanoparticles activate hydrogenase synthesis and improve heterotrophic growth of Ralstonia eutropha H16.

IF 2.2 4区 生物学 Q3 MICROBIOLOGY
Tatevik Manutsyan, Syuzanna Blbulyan, Anait Vassilian, Tatiana Semashko, Gayane Kirakosyan, Lilit Gabrielyan, Karen Trchounian, Anna Poladyan
{"title":"Gold nanoparticles activate hydrogenase synthesis and improve heterotrophic growth of Ralstonia eutropha H16.","authors":"Tatevik Manutsyan, Syuzanna Blbulyan, Anait Vassilian, Tatiana Semashko, Gayane Kirakosyan, Lilit Gabrielyan, Karen Trchounian, Anna Poladyan","doi":"10.1093/femsle/fnad138","DOIUrl":null,"url":null,"abstract":"<p><p>Ralstonia eutropha is a facultative chemolithoautotrophic aerobic bacterium that grows using organic substrates or H2 and CO2. Hydrogenases (Hyds) are synthesized under lithoautotrophic, or energy-limited heterotrophic conditions and are used in enzyme fuel cells (EFC) as anodic catalysts. The effects of chemically synthesized gold nanoparticles (Au-NPs) on R. eutropha H16 growth, oxidation-reduction potential (ORP) kinetics, and H2-oxidizing Hyd activity were investigated in this study. Atomic force microscopy showed that thin, plate-shaped Au-NPs were in the nanoscale range with an average size of 5.68 nm. Compared with growth in medium without Au-NPs (control), the presence of Au-NPs stimulated growth, and resulted in a decrease in ORP to negative values. H2-oxidizing activity was not detected in the absence of Au-NPs, but activity was significantly induced (12 U/g CDW) after 24 h of growth with 18 ng/ml, increasing a further 4-fold after 72 h of growth. The results demonstrate that Au-NPs primarily influence the membrane-bound Hyd. In contrast to R. eutropha, Au-NPs had a negligible or negative effect on the growth, Hyd activity, and H2 production of Escherichia coli. The findings of this study offer new perspectives for the production of oxygen-tolerant Hyds and the development of EFCs.</p>","PeriodicalId":12214,"journal":{"name":"Fems Microbiology Letters","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fems Microbiology Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsle/fnad138","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Ralstonia eutropha is a facultative chemolithoautotrophic aerobic bacterium that grows using organic substrates or H2 and CO2. Hydrogenases (Hyds) are synthesized under lithoautotrophic, or energy-limited heterotrophic conditions and are used in enzyme fuel cells (EFC) as anodic catalysts. The effects of chemically synthesized gold nanoparticles (Au-NPs) on R. eutropha H16 growth, oxidation-reduction potential (ORP) kinetics, and H2-oxidizing Hyd activity were investigated in this study. Atomic force microscopy showed that thin, plate-shaped Au-NPs were in the nanoscale range with an average size of 5.68 nm. Compared with growth in medium without Au-NPs (control), the presence of Au-NPs stimulated growth, and resulted in a decrease in ORP to negative values. H2-oxidizing activity was not detected in the absence of Au-NPs, but activity was significantly induced (12 U/g CDW) after 24 h of growth with 18 ng/ml, increasing a further 4-fold after 72 h of growth. The results demonstrate that Au-NPs primarily influence the membrane-bound Hyd. In contrast to R. eutropha, Au-NPs had a negligible or negative effect on the growth, Hyd activity, and H2 production of Escherichia coli. The findings of this study offer new perspectives for the production of oxygen-tolerant Hyds and the development of EFCs.

金纳米粒子激活氢酶合成并改善 Ralstonia eutropha H16 的异养生长。
Ralstonia eutropha 是一种利用有机底物或 H2 和 CO2 生长的兼性化石自养需氧细菌。氢化酶(Hyds)是在锂自养或能量受限的异养条件下合成的,在酶燃料电池(EFC)中用作阳极催化剂。本研究调查了化学合成金纳米颗粒(Au-NPs)对 R. eutropha H16 的生长、氧化还原电位(ORP)动力学和 H2- 氧化水合活性的影响。原子力显微镜显示,薄的板状 Au-NPs 处于纳米级范围,平均尺寸为 5.68 nm。与在不含 Au-NPs 的培养基(对照组)中生长相比,Au-NPs 的存在刺激了生长,并导致 ORP 下降到负值。在没有 Au-NPs 的情况下检测不到 H2-氧化活性,但在 18 ng/mL 的培养基中生长 24 小时后,活性显著提高(12 U/g CDW),生长 72 小时后活性进一步提高 4 倍。结果表明,Au-NPs 主要影响膜结合水合作用。与 R. eutropha 相反,Au-NPs 对大肠杆菌的生长、氢酶活性和 H2 产量的影响可以忽略不计,甚至是负面的。本研究的发现为生产耐氧氢化酶和开发 EFCs 提供了新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Fems Microbiology Letters
Fems Microbiology Letters 生物-微生物学
CiteScore
4.30
自引率
0.00%
发文量
112
审稿时长
1.9 months
期刊介绍: FEMS Microbiology Letters gives priority to concise papers that merit rapid publication by virtue of their originality, general interest and contribution to new developments in microbiology. All aspects of microbiology, including virology, are covered. 2019 Impact Factor: 1.987, Journal Citation Reports (Source Clarivate, 2020) Ranking: 98/135 (Microbiology) The journal is divided into eight Sections: Physiology and Biochemistry (including genetics, molecular biology and ‘omic’ studies) Food Microbiology (from food production and biotechnology to spoilage and food borne pathogens) Biotechnology and Synthetic Biology Pathogens and Pathogenicity (including medical, veterinary, plant and insect pathogens – particularly those relating to food security – with the exception of viruses) Environmental Microbiology (including ecophysiology, ecogenomics and meta-omic studies) Virology (viruses infecting any organism, including Bacteria and Archaea) Taxonomy and Systematics (for publication of novel taxa, taxonomic reclassifications and reviews of a taxonomic nature) Professional Development (including education, training, CPD, research assessment frameworks, research and publication metrics, best-practice, careers and history of microbiology) If you are unsure which Section is most appropriate for your manuscript, for example in the case of transdisciplinary studies, we recommend that you contact the Editor-In-Chief by email prior to submission. Our scope includes any type of microorganism - all members of the Bacteria and the Archaea and microbial members of the Eukarya (yeasts, filamentous fungi, microbial algae, protozoa, oomycetes, myxomycetes, etc.) as well as all viruses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信