Special Topic on Physics-Based Modeling and Simulation of Materials, Devices, and Circuits of Beyond-CMOS Logic and Memory Technologies for Energy-Efficient Computing

IF 2 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Sumeet Kumar Gupta
{"title":"Special Topic on Physics-Based Modeling and Simulation of Materials, Devices, and Circuits of Beyond-CMOS Logic and Memory Technologies for Energy-Efficient Computing","authors":"Sumeet Kumar Gupta","doi":"10.1109/JXCDC.2023.3340557","DOIUrl":null,"url":null,"abstract":"Standard complementary metal–oxide–semiconductor (CMOS) technology and its advanced flavors in the form of FinFETs have propelled the electronic industry to its extraordinary success. While the CMOS technology may continue to deliver its remarkably powerful performance to next-generation computing platforms, it is quite clear that in the longer term, it has major challenges in scaling, suffers from power consumption and power density limitations, and may not be amenable to the new demands of the emerging applications. This will require beyond-CMOS technologies to step in and augment CMOS. Whether it is the design of energy-efficient scalable switches for logic design, or nonvolatile memory, or the integration of memory and logic functionalities for general-purpose computers and application-specific accelerators, the need for the application of quantum materials to realize these new microelectronic devices has surged.","PeriodicalId":54149,"journal":{"name":"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10378858","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10378858/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Standard complementary metal–oxide–semiconductor (CMOS) technology and its advanced flavors in the form of FinFETs have propelled the electronic industry to its extraordinary success. While the CMOS technology may continue to deliver its remarkably powerful performance to next-generation computing platforms, it is quite clear that in the longer term, it has major challenges in scaling, suffers from power consumption and power density limitations, and may not be amenable to the new demands of the emerging applications. This will require beyond-CMOS technologies to step in and augment CMOS. Whether it is the design of energy-efficient scalable switches for logic design, or nonvolatile memory, or the integration of memory and logic functionalities for general-purpose computers and application-specific accelerators, the need for the application of quantum materials to realize these new microelectronic devices has surged.
面向高能效计算的 Beyond-CMOS 逻辑和存储器技术的材料、器件和电路的物理建模与仿真专题
标准互补金属氧化物半导体(CMOS)技术及其以 FinFET 为代表的先进技术推动电子行业取得了非凡的成就。虽然 CMOS 技术可能会继续为下一代计算平台提供强大的性能,但很明显,从长远来看,它在扩展方面面临重大挑战,受到功耗和功率密度的限制,可能无法满足新兴应用的新要求。这就需要超越 CMOS 的技术介入并增强 CMOS。无论是设计用于逻辑设计的高能效可扩展开关,还是非易失性存储器,抑或是为通用计算机和特定应用加速器集成存储器和逻辑功能,都急需应用量子材料来实现这些新型微电子器件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.00
自引率
4.20%
发文量
11
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信