{"title":"Treatment prediction with machine learning in prostate cancer patients.","authors":"Emre Alataş, Handan Tanyıldızı Kökkülünk, Hilal Tanyıldızı, Goksel Alcın","doi":"10.1080/10255842.2023.2298364","DOIUrl":null,"url":null,"abstract":"<p><p>There are various treatment modalities for prostate cancer, which has a high incidence. In this study, it is aimed to make predictions with machine learning in order to determine the optimal treatment option for prostate cancer patients. The study included 88 male patients diagnosed with prostate cancer. Independent variables were determined as Gleason scores, biopsy, PSA, SUV<sub>max</sub>, and age. Prostate cancer treatments, which are dependent variables, were determined as hormone therapy(<i>n</i> = 30), radiotherapy(<i>n</i> = 28) and radiotherapy + hormone therapy(<i>n</i> = 30). Machine learning was carried out in the Python with SVM, RF, DT, ETC and XGBoost. Metrics such as accuracy, ROC curve, and AUC were used to evaluate the performance of multi-class predictions. The model with the highest number of successful predictions was the XGBoost. False negative rates for hormone therapy, radiotherapy, and radiotherapy + hormone therapy treatments were, respectively, 12.5, 33.3, and 0%. The accuracy values were computed as 0.61, 0.83, 0.83, 0.72 and 0.89 for SVM, RF, DT, ETC and XGBoost, respectively. The three features that had the greatest influence on the treatment model prediction for prostate cancer with XGBoost were biopsy, Gleason score (3 + 3), and PSA level, respectively. According to the AUC, ROC and accuracy, it was determined that the XGBoost was the model that made the best estimation of prostate cancer treatment. Among the variables biopsy, Gleason score, and PSA level are identified as key variables in prediction of treatment.</p>","PeriodicalId":50640,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering","volume":" ","pages":"572-580"},"PeriodicalIF":1.7000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Biomechanics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10255842.2023.2298364","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/26 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
There are various treatment modalities for prostate cancer, which has a high incidence. In this study, it is aimed to make predictions with machine learning in order to determine the optimal treatment option for prostate cancer patients. The study included 88 male patients diagnosed with prostate cancer. Independent variables were determined as Gleason scores, biopsy, PSA, SUVmax, and age. Prostate cancer treatments, which are dependent variables, were determined as hormone therapy(n = 30), radiotherapy(n = 28) and radiotherapy + hormone therapy(n = 30). Machine learning was carried out in the Python with SVM, RF, DT, ETC and XGBoost. Metrics such as accuracy, ROC curve, and AUC were used to evaluate the performance of multi-class predictions. The model with the highest number of successful predictions was the XGBoost. False negative rates for hormone therapy, radiotherapy, and radiotherapy + hormone therapy treatments were, respectively, 12.5, 33.3, and 0%. The accuracy values were computed as 0.61, 0.83, 0.83, 0.72 and 0.89 for SVM, RF, DT, ETC and XGBoost, respectively. The three features that had the greatest influence on the treatment model prediction for prostate cancer with XGBoost were biopsy, Gleason score (3 + 3), and PSA level, respectively. According to the AUC, ROC and accuracy, it was determined that the XGBoost was the model that made the best estimation of prostate cancer treatment. Among the variables biopsy, Gleason score, and PSA level are identified as key variables in prediction of treatment.
期刊介绍:
The primary aims of Computer Methods in Biomechanics and Biomedical Engineering are to provide a means of communicating the advances being made in the areas of biomechanics and biomedical engineering and to stimulate interest in the continually emerging computer based technologies which are being applied in these multidisciplinary subjects. Computer Methods in Biomechanics and Biomedical Engineering will also provide a focus for the importance of integrating the disciplines of engineering with medical technology and clinical expertise. Such integration will have a major impact on health care in the future.