Preparation and Characterization of Nanocomposite Perovskite Cathode Materials La0.3Sr0.7Fe0.4Ti0.6O3-δ (LSFT) for Low-Temperature SOFCs with Incorporation of Graphene Oxide (GO)

IF 1.5 4区 材料科学 Q3 Chemistry
Khalil Ahmad, Ghazanfar Abbas, M. Ashfaq Ahmad, Zafarullah kazim, Tariq Munir
{"title":"Preparation and Characterization of Nanocomposite Perovskite Cathode Materials La0.3Sr0.7Fe0.4Ti0.6O3-δ (LSFT) for Low-Temperature SOFCs with Incorporation of Graphene Oxide (GO)","authors":"Khalil Ahmad,&nbsp;Ghazanfar Abbas,&nbsp;M. Ashfaq Ahmad,&nbsp;Zafarullah kazim,&nbsp;Tariq Munir","doi":"10.1002/crat.202300197","DOIUrl":null,"url":null,"abstract":"<p>The porous and mixed ionic electronic cathode conductor plays a vital role in the efficient working of low-temperature solid oxide fuel cells. Perovskite composite cathode material La<sub>0.3</sub>Sr<sub>0.7</sub>Fe<sub>0.4</sub>Ti<sub>0.6</sub>O<sub>3-δ</sub> (LSFT) is synthesized using the sol–gel method. Graphene oxide (GO) is integrated in 1 and 1.5 wt.% into the perovskite LSFT cathode to use as a cathode for low-temperature solid oxide fuel cell (LT-SOFC). Crystal structure analysis is studied by XRD and the crystalline size of samples is determined in the range of 103–73 nm. SEM analysis is used to characterize homogeneous and porous morphology. The FTIR spectral analysis is examined for proposed nanocomposite cathode materials. The electrical conductivities are carried out by four probe method in air atmosphere in the temperature range 300–600 °C and enhanced conductivity is obtained 7 Scm<sup>−1</sup> for LSFT-1.5 wt.% GO sample. For the same sample, a minimum value of area-specific resistance (ASR) of 0.02 Ωcm<sup>2</sup> is obtained. The performance of three-layer fuel cells is tested by supplying H<sub>2</sub> fueled at the anode and oxygen at the cathode terminal of the cell and peak power density is determined to be 362 mWcm<sup>−2</sup> for GO incorporated fuel cell. The prepared cathode can be proposed as a potential candidate for low-temperature solid oxide fuel cells.</p>","PeriodicalId":48935,"journal":{"name":"Crystal Research and Technology","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystal Research and Technology","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/crat.202300197","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 0

Abstract

The porous and mixed ionic electronic cathode conductor plays a vital role in the efficient working of low-temperature solid oxide fuel cells. Perovskite composite cathode material La0.3Sr0.7Fe0.4Ti0.6O3-δ (LSFT) is synthesized using the sol–gel method. Graphene oxide (GO) is integrated in 1 and 1.5 wt.% into the perovskite LSFT cathode to use as a cathode for low-temperature solid oxide fuel cell (LT-SOFC). Crystal structure analysis is studied by XRD and the crystalline size of samples is determined in the range of 103–73 nm. SEM analysis is used to characterize homogeneous and porous morphology. The FTIR spectral analysis is examined for proposed nanocomposite cathode materials. The electrical conductivities are carried out by four probe method in air atmosphere in the temperature range 300–600 °C and enhanced conductivity is obtained 7 Scm−1 for LSFT-1.5 wt.% GO sample. For the same sample, a minimum value of area-specific resistance (ASR) of 0.02 Ωcm2 is obtained. The performance of three-layer fuel cells is tested by supplying H2 fueled at the anode and oxygen at the cathode terminal of the cell and peak power density is determined to be 362 mWcm−2 for GO incorporated fuel cell. The prepared cathode can be proposed as a potential candidate for low-temperature solid oxide fuel cells.

Abstract Image

Abstract Image

用于低温 SOFC 的掺入石墨烯氧化物 (GO) 的纳米复合包晶阴极材料 La0.3Sr0.7Fe0.4Ti0.6O3-δ (LSFT) 的制备与表征
多孔混合离子电子阴极导体对低温固体氧化物燃料电池的高效工作起着至关重要的作用。本研究采用溶胶-凝胶法合成了 Perovskite 复合阴极材料 La0.3Sr0.7Fe0.4Ti0.6O3-δ (LSFT)。氧化石墨烯(GO)以 1 和 1.5 wt.% 的比例加入到过氧化物 LSFT 阴极中,用作低温固体氧化物燃料电池(LT-SOFC)的阴极。通过 XRD 对晶体结构进行了分析,确定了样品的晶体尺寸范围为 103-73 nm。扫描电子显微镜(SEM)分析用于表征均匀和多孔的形态。傅立叶变换红外光谱分析用于研究拟议的纳米复合阴极材料。在 300-600 °C 的温度范围内,采用四探针法在空气环境中进行了电导率测试,LSFT-1.5 wt.% GO 样品的电导率提高到了 7 Scm-1。同一样品的特定区域电阻(ASR)最小值为 0.02 Ωcm2。通过在阳极提供以 H2 为燃料的气体,并在阴极端提供氧气,测试了三层燃料电池的性能,结果表明含有 GO 的燃料电池的峰值功率密度为 362 mWcm-2。所制备的阴极可作为低温固体氧化物燃料电池的潜在候选材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
6.70%
发文量
121
审稿时长
1.9 months
期刊介绍: The journal Crystal Research and Technology is a pure online Journal (since 2012). Crystal Research and Technology is an international journal examining all aspects of research within experimental, industrial, and theoretical crystallography. The journal covers the relevant aspects of -crystal growth techniques and phenomena (including bulk growth, thin films) -modern crystalline materials (e.g. smart materials, nanocrystals, quasicrystals, liquid crystals) -industrial crystallisation -application of crystals in materials science, electronics, data storage, and optics -experimental, simulation and theoretical studies of the structural properties of crystals -crystallographic computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信