Luigi Colalongo , Simone Comensoli , Anna Richelli
{"title":"A unified core model of double-gate and surrounding-gate MOSFETs for circuit simulation","authors":"Luigi Colalongo , Simone Comensoli , Anna Richelli","doi":"10.1016/j.sse.2023.108849","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents a new core compact model of double-gate (DGFET) and surrounding-gate (SGFET) MOSFETs for circuit simulations. The current and the terminal charges are continuous with high computation efficiency and accuracy. Despite its accuracy, it retains the same simplicity of the industry standard transistors models. The drain current is worked out without invoking the charge-sheet approximation exploiting a quadratic symmetric polynomial interpolation of the charge in the channel. Apart this clear approximation, no other simplification is used to work out the drain current, the terminal charges, the potential, and electric field in the channel. The accuracy of the model is shown by comparison with the exact numerical solution and experimental data of the literature.</p></div>","PeriodicalId":21909,"journal":{"name":"Solid-state Electronics","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid-state Electronics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038110123002629","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a new core compact model of double-gate (DGFET) and surrounding-gate (SGFET) MOSFETs for circuit simulations. The current and the terminal charges are continuous with high computation efficiency and accuracy. Despite its accuracy, it retains the same simplicity of the industry standard transistors models. The drain current is worked out without invoking the charge-sheet approximation exploiting a quadratic symmetric polynomial interpolation of the charge in the channel. Apart this clear approximation, no other simplification is used to work out the drain current, the terminal charges, the potential, and electric field in the channel. The accuracy of the model is shown by comparison with the exact numerical solution and experimental data of the literature.
期刊介绍:
It is the aim of this journal to bring together in one publication outstanding papers reporting new and original work in the following areas: (1) applications of solid-state physics and technology to electronics and optoelectronics, including theory and device design; (2) optical, electrical, morphological characterization techniques and parameter extraction of devices; (3) fabrication of semiconductor devices, and also device-related materials growth, measurement and evaluation; (4) the physics and modeling of submicron and nanoscale microelectronic and optoelectronic devices, including processing, measurement, and performance evaluation; (5) applications of numerical methods to the modeling and simulation of solid-state devices and processes; and (6) nanoscale electronic and optoelectronic devices, photovoltaics, sensors, and MEMS based on semiconductor and alternative electronic materials; (7) synthesis and electrooptical properties of materials for novel devices.