Observation and quantitative analysis of dislocations in steel using electron channeling contrast imaging method with precise control of electron beam incident direction.

Takashige Mori, Takafumi Amino, Chie Yokoyama, Shunsuke Taniguchi, Takayuki Yonezawa, Akira Taniyama
{"title":"Observation and quantitative analysis of dislocations in steel using electron channeling contrast imaging method with precise control of electron beam incident direction.","authors":"Takashige Mori, Takafumi Amino, Chie Yokoyama, Shunsuke Taniguchi, Takayuki Yonezawa, Akira Taniyama","doi":"10.1093/jmicro/dfad061","DOIUrl":null,"url":null,"abstract":"<p><p>Electron channeling contrast imaging (ECCI) was applied by precisely controlling the primary electron beam incident direction of the crystal plane in scanning electron microscope (SEM), and the dislocation contrast in steel materials was investigated in detail via SEM/ECCI. The dislocation contrast was observed near a channeling condition, where the incident electron beam direction of the crystal plane varied, and the backscattered electron intensity reached a local minimum. Comparing the dislocation contrasts in the visualized electron channeling contrast (ECC) images and transmission electron microscope (TEM) images, the positions of all dislocation lines were coincident. During the SEM/ECCI observation, the dislocation contrast varied depending on the incident electron beam direction of the crystal plane and accelerating voltages, and optimal conditions existed. When the diffraction condition g and the Burgers vector b of dislocation satisfied the condition g⸱b = 0, the screw dislocation contrast in the ECC image disappeared. An edge dislocation line was wider than a screw dislocation line. Thus, the SEM/ECCI method can be used for dislocation characterization and the strain field evaluation around dislocation, like the TEM method. The depth information of SEM/ECCI, where the channeling condition is strictly satisfied, can be obtained from dislocation contrast deeper than 5ξg, typically used for depth of SEM/ECCI.</p>","PeriodicalId":74193,"journal":{"name":"Microscopy (Oxford, England)","volume":" ","pages":"308-317"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11288192/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microscopy (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jmicro/dfad061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Electron channeling contrast imaging (ECCI) was applied by precisely controlling the primary electron beam incident direction of the crystal plane in scanning electron microscope (SEM), and the dislocation contrast in steel materials was investigated in detail via SEM/ECCI. The dislocation contrast was observed near a channeling condition, where the incident electron beam direction of the crystal plane varied, and the backscattered electron intensity reached a local minimum. Comparing the dislocation contrasts in the visualized electron channeling contrast (ECC) images and transmission electron microscope (TEM) images, the positions of all dislocation lines were coincident. During the SEM/ECCI observation, the dislocation contrast varied depending on the incident electron beam direction of the crystal plane and accelerating voltages, and optimal conditions existed. When the diffraction condition g and the Burgers vector b of dislocation satisfied the condition g⸱b = 0, the screw dislocation contrast in the ECC image disappeared. An edge dislocation line was wider than a screw dislocation line. Thus, the SEM/ECCI method can be used for dislocation characterization and the strain field evaluation around dislocation, like the TEM method. The depth information of SEM/ECCI, where the channeling condition is strictly satisfied, can be obtained from dislocation contrast deeper than 5ξg, typically used for depth of SEM/ECCI.

利用精确控制电子束入射方向的电子通道对比成像方法观测和定量分析钢中的位错。
通过精确控制扫描电子显微镜(SEM)中晶体平面的主电子束入射方向,应用电子沟道对比成像(ECCI)技术,通过 SEM/ECCI 详细研究了钢铁材料中的位错对比。在晶面入射电子束方向变化的沟道条件附近观察到了位错对比,反向散射电子强度达到了局部最小值。对比可视化电子扫描对比(ECC)图像和透射电子显微镜(TEM)图像中的位错对比,所有位错线的位置都是重合的。在 SEM/ECCI 观察过程中,位错对比度随晶体平面入射电子束方向和加速电压的不同而变化,并存在最佳条件。当衍射条件 g 和位错的布尔矢量 b 满足 g b = 0 条件时,ECC 图像中的螺旋位错对比度消失。边缘位错线比螺旋位错线宽。因此,与 TEM 方法一样,SEM/ECCI 方法可用于位错表征和位错周围的应变场评估。在严格满足沟道条件的情况下,SEM/ECCI 的深度信息可从通常用于 SEM/ECCI 深度的 5ξg 以上的位错对比中获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信