Prevalence, virulence characteristics, and antimicrobial resistance of Vibrio parahaemolyticus isolates from raw seafood in a province in Northern Thailand.
{"title":"Prevalence, virulence characteristics, and antimicrobial resistance of Vibrio parahaemolyticus isolates from raw seafood in a province in Northern Thailand.","authors":"Achiraya Siriphap, Watsawan Prapasawat, Jednipit Borthong, Wimonrat Tanomsridachchai, Chonchanok Muangnapoh, Orasa Suthienkul, Kaknokrat Chonsin","doi":"10.1093/femsle/fnad134","DOIUrl":null,"url":null,"abstract":"<p><p>Vibrio parahaemolyticus (V. parahaemolyticus) is commonly found in seawater and seafood products, but evidence is limited of its presence in seafood marketed in locations very distant from coastal sources. This study determined the prevalence and characterization of V. parahaemolyticus in seafood from markets in landlocked Phayao province, Northern Thailand. Among 120 samples, 26 (21.7%) were positive for V. parahaemolyticus, being highest in shrimp (43.3%), followed by shellfish (36.7%), and squid (6.7%), but was not found in fish. V. parahaemolyticus comprised 33 isolates that were non-pathogenic and non-pandemic. Almost all isolates from shrimp and shellfish samples were positive for T3SS1. Only five isolates (15.2%) showed two antimicrobial resistance patterns, namely, kanamycin-streptomycin (1) carrying sul2 and ampicillin-kanamycin-streptomycin (4) that carried tetA (2), tetA-sul2 (1), as well as one negative. Antimicrobial susceptible V. parahaemolyticus isolates possessing tetA (67.9%) and sul2 (3.5%) were also found. Six isolates positive for integron class 1 and/or class 2 were detected in 4 antimicrobial susceptible and 2 resistant isolates. While pathogenic V. parahaemolyticus was not detected, contamination of antimicrobial resistance V. parahaemolyticus in seafood in locations distant from coastal areas requires ongoing monitoring to improve food safety in the seafood supply chain.</p>","PeriodicalId":12214,"journal":{"name":"Fems Microbiology Letters","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fems Microbiology Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsle/fnad134","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Vibrio parahaemolyticus (V. parahaemolyticus) is commonly found in seawater and seafood products, but evidence is limited of its presence in seafood marketed in locations very distant from coastal sources. This study determined the prevalence and characterization of V. parahaemolyticus in seafood from markets in landlocked Phayao province, Northern Thailand. Among 120 samples, 26 (21.7%) were positive for V. parahaemolyticus, being highest in shrimp (43.3%), followed by shellfish (36.7%), and squid (6.7%), but was not found in fish. V. parahaemolyticus comprised 33 isolates that were non-pathogenic and non-pandemic. Almost all isolates from shrimp and shellfish samples were positive for T3SS1. Only five isolates (15.2%) showed two antimicrobial resistance patterns, namely, kanamycin-streptomycin (1) carrying sul2 and ampicillin-kanamycin-streptomycin (4) that carried tetA (2), tetA-sul2 (1), as well as one negative. Antimicrobial susceptible V. parahaemolyticus isolates possessing tetA (67.9%) and sul2 (3.5%) were also found. Six isolates positive for integron class 1 and/or class 2 were detected in 4 antimicrobial susceptible and 2 resistant isolates. While pathogenic V. parahaemolyticus was not detected, contamination of antimicrobial resistance V. parahaemolyticus in seafood in locations distant from coastal areas requires ongoing monitoring to improve food safety in the seafood supply chain.
期刊介绍:
FEMS Microbiology Letters gives priority to concise papers that merit rapid publication by virtue of their originality, general interest and contribution to new developments in microbiology. All aspects of microbiology, including virology, are covered.
2019 Impact Factor: 1.987, Journal Citation Reports (Source Clarivate, 2020)
Ranking: 98/135 (Microbiology)
The journal is divided into eight Sections:
Physiology and Biochemistry (including genetics, molecular biology and ‘omic’ studies)
Food Microbiology (from food production and biotechnology to spoilage and food borne pathogens)
Biotechnology and Synthetic Biology
Pathogens and Pathogenicity (including medical, veterinary, plant and insect pathogens – particularly those relating to food security – with the exception of viruses)
Environmental Microbiology (including ecophysiology, ecogenomics and meta-omic studies)
Virology (viruses infecting any organism, including Bacteria and Archaea)
Taxonomy and Systematics (for publication of novel taxa, taxonomic reclassifications and reviews of a taxonomic nature)
Professional Development (including education, training, CPD, research assessment frameworks, research and publication metrics, best-practice, careers and history of microbiology)
If you are unsure which Section is most appropriate for your manuscript, for example in the case of transdisciplinary studies, we recommend that you contact the Editor-In-Chief by email prior to submission. Our scope includes any type of microorganism - all members of the Bacteria and the Archaea and microbial members of the Eukarya (yeasts, filamentous fungi, microbial algae, protozoa, oomycetes, myxomycetes, etc.) as well as all viruses.