Emilia Monserrat Ortiz Villarruel, José Faustino Souza de Carvalho Filho, Marco Aurélio Suller Garcia, João Monnerat Araujo Ribeiro de Almeida, Donato Alexandre Gomes Aranda, Pedro Nothaft Romano
{"title":"Maintaining high-triglyceride content and reducing free fatty acids in distillers corn oil: A catalyst-free multivariate strategy","authors":"Emilia Monserrat Ortiz Villarruel, José Faustino Souza de Carvalho Filho, Marco Aurélio Suller Garcia, João Monnerat Araujo Ribeiro de Almeida, Donato Alexandre Gomes Aranda, Pedro Nothaft Romano","doi":"10.1002/aocs.12802","DOIUrl":null,"url":null,"abstract":"<p>Distillers corn oil (DCO), a byproduct of corn ethanol production, offers an alternative glyceride source for biodiesel production. Nonetheless, its higher free fatty acids (FFA) content compared to other vegetable oils hampers its direct conversion into fatty acid methyl esters (FAME) due to soap formation, catalysts' activity decreasing, and emulsions generation (thus reducing FAME yield), which compromise the quality and stability of the biodiesel produced. Thus, pretreatment steps such as esterification may reduce the FFA to mitigate these issues. In this context, by utilizing glycerine, a solution emerges: esterifying these high-acidity oils to convert FFA into triglycerides (TAG) before transesterification. However, little is known about how integrated reaction conditions can affect the process in a catalyst-free system. Thus, our study was guided by a clear-cut objective: transforming DCO into a raw material ideally suited for biodiesel production, which involved a dramatic reduction in FFA content, reducing it from 18% to a mere 2% while preserving a high concentration of TAG. For that, we systematically employed a response surface methodology with a three-factorial central composite design to investigate the complex interactions among key parameters: temperature, vacuum pressure, and the glycerol/oil mass ratio. Elevated temperatures and a 2:1 glycerol/oil mass ratio were beneficial for FFA reduction, increased TAG content, and improved oil color. Interaction analysis identified synergistic temperature and vacuum pressure effects on FFA reduction, TAG production, and photometric color index reduction, revealing optimal conditions. Hence, the statistical model highlights DCO as a viable oil for future transesterification processes, laying the foundation for an eco-friendly and economically efficient biodiesel production network.</p>","PeriodicalId":17182,"journal":{"name":"Journal of the American Oil Chemists Society","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Oil Chemists Society","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aocs.12802","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Distillers corn oil (DCO), a byproduct of corn ethanol production, offers an alternative glyceride source for biodiesel production. Nonetheless, its higher free fatty acids (FFA) content compared to other vegetable oils hampers its direct conversion into fatty acid methyl esters (FAME) due to soap formation, catalysts' activity decreasing, and emulsions generation (thus reducing FAME yield), which compromise the quality and stability of the biodiesel produced. Thus, pretreatment steps such as esterification may reduce the FFA to mitigate these issues. In this context, by utilizing glycerine, a solution emerges: esterifying these high-acidity oils to convert FFA into triglycerides (TAG) before transesterification. However, little is known about how integrated reaction conditions can affect the process in a catalyst-free system. Thus, our study was guided by a clear-cut objective: transforming DCO into a raw material ideally suited for biodiesel production, which involved a dramatic reduction in FFA content, reducing it from 18% to a mere 2% while preserving a high concentration of TAG. For that, we systematically employed a response surface methodology with a three-factorial central composite design to investigate the complex interactions among key parameters: temperature, vacuum pressure, and the glycerol/oil mass ratio. Elevated temperatures and a 2:1 glycerol/oil mass ratio were beneficial for FFA reduction, increased TAG content, and improved oil color. Interaction analysis identified synergistic temperature and vacuum pressure effects on FFA reduction, TAG production, and photometric color index reduction, revealing optimal conditions. Hence, the statistical model highlights DCO as a viable oil for future transesterification processes, laying the foundation for an eco-friendly and economically efficient biodiesel production network.
期刊介绍:
The Journal of the American Oil Chemists’ Society (JAOCS) is an international peer-reviewed journal that publishes significant original scientific research and technological advances on fats, oils, oilseed proteins, and related materials through original research articles, invited reviews, short communications, and letters to the editor. We seek to publish reports that will significantly advance scientific understanding through hypothesis driven research, innovations, and important new information pertaining to analysis, properties, processing, products, and applications of these food and industrial resources. Breakthroughs in food science and technology, biotechnology (including genomics, biomechanisms, biocatalysis and bioprocessing), and industrial products and applications are particularly appropriate.
JAOCS also considers reports on the lipid composition of new, unique, and traditional sources of lipids that definitively address a research hypothesis and advances scientific understanding. However, the genus and species of the source must be verified by appropriate means of classification. In addition, the GPS location of the harvested materials and seed or vegetative samples should be deposited in an accredited germplasm repository. Compositional data suitable for Original Research Articles must embody replicated estimate of tissue constituents, such as oil, protein, carbohydrate, fatty acid, phospholipid, tocopherol, sterol, and carotenoid compositions. Other components unique to the specific plant or animal source may be reported. Furthermore, lipid composition papers should incorporate elements of yeartoyear, environmental, and/ or cultivar variations through use of appropriate statistical analyses.