Quad-atmospheric Pressure Plasma Jet (q-APPJ) Treatment of Chilli Seeds to Stimulate Germination

IF 2.6 3区 物理与天体物理 Q3 ENGINEERING, CHEMICAL
Naeem Ahmed, Asad Masood, Rubab Mumtaz, M. F. Mohd Razip Wee, Kok Meng Chan, Anuttam Patra, Kim S. Siow
{"title":"Quad-atmospheric Pressure Plasma Jet (q-APPJ) Treatment of Chilli Seeds to Stimulate Germination","authors":"Naeem Ahmed,&nbsp;Asad Masood,&nbsp;Rubab Mumtaz,&nbsp;M. F. Mohd Razip Wee,&nbsp;Kok Meng Chan,&nbsp;Anuttam Patra,&nbsp;Kim S. Siow","doi":"10.1007/s11090-023-10436-6","DOIUrl":null,"url":null,"abstract":"<div><p>In the current study, a square assembly of four quad-atmospheric pressure plasma jets (q-APPJ) is used to treat large-sized chilli seeds simultaneously. Germination and growth characteristics improve significantly after a 10-sec treatment of q-APPJ employing argon as the working gas. Plasma-treated chilli seed is more etched and porous than those untreated seed surface, as shown in scanning electron microscopy. The chemical changes of the plasma-treated seeds showed that the Ar plasma-treatment oxidise the seed surface to enhance their wettability, stimulate the water uptake, increase the water electrical conductivity and result in improved seed germination. In addition, optical emission spectroscopy is used to detect the different plasma species present and evaluate their plasma parameters (electron temperature and density). These positive results suggested that Ar plasma-treatment, in APPJ setup, improve seed germination, and potentially improve crop yield, and food security issues.</p></div>","PeriodicalId":734,"journal":{"name":"Plasma Chemistry and Plasma Processing","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Chemistry and Plasma Processing","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11090-023-10436-6","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In the current study, a square assembly of four quad-atmospheric pressure plasma jets (q-APPJ) is used to treat large-sized chilli seeds simultaneously. Germination and growth characteristics improve significantly after a 10-sec treatment of q-APPJ employing argon as the working gas. Plasma-treated chilli seed is more etched and porous than those untreated seed surface, as shown in scanning electron microscopy. The chemical changes of the plasma-treated seeds showed that the Ar plasma-treatment oxidise the seed surface to enhance their wettability, stimulate the water uptake, increase the water electrical conductivity and result in improved seed germination. In addition, optical emission spectroscopy is used to detect the different plasma species present and evaluate their plasma parameters (electron temperature and density). These positive results suggested that Ar plasma-treatment, in APPJ setup, improve seed germination, and potentially improve crop yield, and food security issues.

Abstract Image

Abstract Image

四大气压等离子体射流 (q-APPJ) 处理辣椒种子以刺激发芽
在当前的研究中,使用由四个四大气压等离子体射流(q-APPJ)组成的方形组件同时处理大型辣椒种子。使用氩气作为工作气体的 q-APPJ 处理 10 秒后,种子的发芽和生长特性明显改善。扫描电子显微镜显示,经过等离子体处理的辣椒种子比未经处理的种子表面蚀刻和多孔程度更高。等离子体处理种子的化学变化表明,氩气等离子体处理可氧化种子表面,从而提高种子的润湿性,刺激种子吸水,增加水的导电性,提高种子的发芽率。此外,还利用光学发射光谱来检测存在的不同等离子体种类,并评估其等离子体参数(电子温度和密度)。这些积极的结果表明,在 APPJ 设置中,氩等离子体处理可提高种子发芽率,并有可能提高作物产量,解决粮食安全问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Plasma Chemistry and Plasma Processing
Plasma Chemistry and Plasma Processing 工程技术-工程:化工
CiteScore
5.90
自引率
8.30%
发文量
73
审稿时长
6-12 weeks
期刊介绍: Publishing original papers on fundamental and applied research in plasma chemistry and plasma processing, the scope of this journal includes processing plasmas ranging from non-thermal plasmas to thermal plasmas, and fundamental plasma studies as well as studies of specific plasma applications. Such applications include but are not limited to plasma catalysis, environmental processing including treatment of liquids and gases, biological applications of plasmas including plasma medicine and agriculture, surface modification and deposition, powder and nanostructure synthesis, energy applications including plasma combustion and reforming, resource recovery, coupling of plasmas and electrochemistry, and plasma etching. Studies of chemical kinetics in plasmas, and the interactions of plasmas with surfaces are also solicited. It is essential that submissions include substantial consideration of the role of the plasma, for example, the relevant plasma chemistry, plasma physics or plasma–surface interactions; manuscripts that consider solely the properties of materials or substances processed using a plasma are not within the journal’s scope.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信