Open-ComBind: harnessing unlabeled data for improved binding pose prediction

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Andrew T. McNutt, David Ryan Koes
{"title":"Open-ComBind: harnessing unlabeled data for improved binding pose prediction","authors":"Andrew T. McNutt,&nbsp;David Ryan Koes","doi":"10.1007/s10822-023-00544-y","DOIUrl":null,"url":null,"abstract":"<div><p>Determination of the bound pose of a ligand is a critical first step in many in silico drug discovery tasks. Molecular docking is the main tool for the prediction of non-covalent binding of a protein and ligand system. Molecular docking pipelines often only utilize the information of one ligand binding to the protein despite the commonly held hypothesis that different ligands share binding interactions when bound to the same receptor. Here we describe Open-ComBind, an easy-to-use, open-source version of the ComBind molecular docking pipeline that leverages information from multiple ligands without known bound structures to enhance pose selection. We first create distributions of feature similarities between ligand pose pairs, comparing near-native poses with all sampled docked poses. These distributions capture the likelihood of observing similar features, such as hydrogen bonds or hydrophobic contacts, in different pose configurations. These similarity distributions are then combined with a per-ligand docking score to enhance overall pose selection by 5% and 4.5% for high-affinity and congeneric series helper ligands, respectively. Open-ComBind reduces the average RMSD of ligands in our benchmark dataset by 9.0%. We provide Open-ComBind as an easy-to-use command line and Python API to increase pose prediction performance at www.github.com/drewnutt/open_combind.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10822-023-00544-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10822-023-00544-y","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Determination of the bound pose of a ligand is a critical first step in many in silico drug discovery tasks. Molecular docking is the main tool for the prediction of non-covalent binding of a protein and ligand system. Molecular docking pipelines often only utilize the information of one ligand binding to the protein despite the commonly held hypothesis that different ligands share binding interactions when bound to the same receptor. Here we describe Open-ComBind, an easy-to-use, open-source version of the ComBind molecular docking pipeline that leverages information from multiple ligands without known bound structures to enhance pose selection. We first create distributions of feature similarities between ligand pose pairs, comparing near-native poses with all sampled docked poses. These distributions capture the likelihood of observing similar features, such as hydrogen bonds or hydrophobic contacts, in different pose configurations. These similarity distributions are then combined with a per-ligand docking score to enhance overall pose selection by 5% and 4.5% for high-affinity and congeneric series helper ligands, respectively. Open-ComBind reduces the average RMSD of ligands in our benchmark dataset by 9.0%. We provide Open-ComBind as an easy-to-use command line and Python API to increase pose prediction performance at www.github.com/drewnutt/open_combind.

Abstract Image

Open-ComBind:利用无标记数据改进结合姿态预测
确定配体的结合姿态是许多硅学药物发现任务中至关重要的第一步。分子对接是预测蛋白质与配体系统非共价结合的主要工具。分子对接管道通常只利用一种配体与蛋白质结合的信息,尽管人们普遍认为不同配体与同一受体结合时会产生相互作用。在这里,我们介绍了Open-ComBind,它是ComBind分子对接管道的一个易于使用的开源版本,可利用多种配体(无已知结合结构)的信息来加强姿势选择。我们首先创建配体姿势对之间的特征相似性分布,将接近原生姿势与所有采样对接姿势进行比较。这些分布反映了在不同姿势配置中观察到类似特征(如氢键或疏水接触)的可能性。然后将这些相似性分布与每个配体的对接得分相结合,使高亲和性配体和同源系列辅助配体的整体姿势选择分别提高 5% 和 4.5%。Open-ComBind 将基准数据集中配体的平均 RMSD 降低了 9.0%。我们提供了易于使用的命令行和 Python 应用程序接口 Open-ComBind,以提高 www.github.com/drewnutt/open_combind 的配体预测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信