Antibacterial Modification of Cotton Fabric Through Argon Plasma-Induced Grafting Polymerization

IF 2.6 3区 物理与天体物理 Q3 ENGINEERING, CHEMICAL
Zhipeng Ma, Hua Wang, Chunxia Wang, Yujie Chen
{"title":"Antibacterial Modification of Cotton Fabric Through Argon Plasma-Induced Grafting Polymerization","authors":"Zhipeng Ma, Hua Wang, Chunxia Wang, Yujie Chen","doi":"10.1007/s11090-023-10430-y","DOIUrl":null,"url":null,"abstract":"<p>Developing antibacterial materials is an efficient way to reduce the risk of harmful microorganism to human body. As a kind of popular textiles, cotton fabric (CF) is easy to breed microorganism and it is necessary to render it with biocidal effect. In this work, a water-soluble N-halamine precursor, (E)-1-(4-(allyloxy)phenyl)-N-(2-(piperazin-1-yl)ethyl)methanimine (APPEM), was synthesized and grafted onto cotton fabric through an argon plasma-induced grafting polymerization process. Afterward, the grafted cotton fabric was exposed to dilute sodium hypochlorite solution to change N–H bond into N–Cl bond and then the antibacterial cotton fabric (CF-APPEM-Cl) was obtained. The treated cotton fabric presented considerable biocidal efficacy and stability against UV light, washing, and storage. <i>Escherichia coli</i> (6.63 logs) and <i>Staphylococcus aureus</i> (6.44 logs) could be effectively inactivated within 60 min. Also, the oxidative chlorine on the fabric recovered over 76.9 and 81.5% after UV irradiation for 24 h and 50 washing cycles, respectively. And the oxidative chlorine remained 85% after 30 days of storage. Meanwhile, the mechanical properties of cotton fabric were hardly affected by this antibacterial treatment. This work provides a simple and efficient way to prepare antibacterial cotton fabric with high performance, which might be helpful to promote the development of antibacterial textiles.</p>","PeriodicalId":734,"journal":{"name":"Plasma Chemistry and Plasma Processing","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Chemistry and Plasma Processing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11090-023-10430-y","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Developing antibacterial materials is an efficient way to reduce the risk of harmful microorganism to human body. As a kind of popular textiles, cotton fabric (CF) is easy to breed microorganism and it is necessary to render it with biocidal effect. In this work, a water-soluble N-halamine precursor, (E)-1-(4-(allyloxy)phenyl)-N-(2-(piperazin-1-yl)ethyl)methanimine (APPEM), was synthesized and grafted onto cotton fabric through an argon plasma-induced grafting polymerization process. Afterward, the grafted cotton fabric was exposed to dilute sodium hypochlorite solution to change N–H bond into N–Cl bond and then the antibacterial cotton fabric (CF-APPEM-Cl) was obtained. The treated cotton fabric presented considerable biocidal efficacy and stability against UV light, washing, and storage. Escherichia coli (6.63 logs) and Staphylococcus aureus (6.44 logs) could be effectively inactivated within 60 min. Also, the oxidative chlorine on the fabric recovered over 76.9 and 81.5% after UV irradiation for 24 h and 50 washing cycles, respectively. And the oxidative chlorine remained 85% after 30 days of storage. Meanwhile, the mechanical properties of cotton fabric were hardly affected by this antibacterial treatment. This work provides a simple and efficient way to prepare antibacterial cotton fabric with high performance, which might be helpful to promote the development of antibacterial textiles.

Abstract Image

氩等离子体诱导接枝聚合对棉织物进行抗菌改性
开发抗菌材料是降低有害微生物对人体危害的有效途径。棉织物作为一种流行的纺织品,易滋生微生物,有必要对其进行杀菌处理。本研究合成了水溶性N-halamine前体(E)-1-(4-(烯丙氧基)苯基)- n-(2-(哌嗪-1-基)乙基)甲胺(APPEM),并通过氩等离子体诱导接枝聚合工艺将其接枝到棉织物上。然后,将接枝棉织物置于稀次氯酸钠溶液中,使N-H键转变为N-Cl键,得到抗菌棉织物(CF-APPEM-Cl)。处理后的棉织物在紫外线、洗涤和储存方面表现出良好的杀菌效果和稳定性。在60 min内可有效灭活大肠杆菌(6.63 log)和金黄色葡萄球菌(6.44 log)。紫外线照射24 h和50次洗涤后,织物上的氧化氯回收率分别达到76.9和81.5%。贮藏30天后,氧化氯含量保持在85%。同时,抗菌处理对棉织物的力学性能几乎没有影响。本研究为制备高性能抗菌棉织物提供了一种简单、高效的方法,对抗菌纺织品的发展有一定的推动作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Plasma Chemistry and Plasma Processing
Plasma Chemistry and Plasma Processing 工程技术-工程:化工
CiteScore
5.90
自引率
8.30%
发文量
73
审稿时长
6-12 weeks
期刊介绍: Publishing original papers on fundamental and applied research in plasma chemistry and plasma processing, the scope of this journal includes processing plasmas ranging from non-thermal plasmas to thermal plasmas, and fundamental plasma studies as well as studies of specific plasma applications. Such applications include but are not limited to plasma catalysis, environmental processing including treatment of liquids and gases, biological applications of plasmas including plasma medicine and agriculture, surface modification and deposition, powder and nanostructure synthesis, energy applications including plasma combustion and reforming, resource recovery, coupling of plasmas and electrochemistry, and plasma etching. Studies of chemical kinetics in plasmas, and the interactions of plasmas with surfaces are also solicited. It is essential that submissions include substantial consideration of the role of the plasma, for example, the relevant plasma chemistry, plasma physics or plasma–surface interactions; manuscripts that consider solely the properties of materials or substances processed using a plasma are not within the journal’s scope.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信