{"title":"Synthesis of fatty ester derived novel multifunctional additive and its performance evaluation in polyol base oil","authors":"Piyush Gupta, Shoaib Akhtar, Nisha, Ripudaman Singh Negi, Suheel Kumar Porwal, Raj Kumar Singh","doi":"10.1002/aocs.12789","DOIUrl":null,"url":null,"abstract":"<p>The organometallics like ZDDPs are widely used as multifunctional additives in lubricants for imparting antiwear, antioxidant, and corrosion inhibitor activity. Since it has toxic elements like P, Zn, and S so it is an environmentally toxic, non-biodegradable, and ash-forming additive. In automotive emissions, it also causes poisoning in catalytic converters. Due to environmental concerns, it is an issue of awareness to discover less toxic alternatives for these multifunctional additives despite their potent and economical properties. In this work, MO was reacted in a stoichiometric ratio with Tga, giving the intermediate compound MO-Tga through thiol-ene coupling. Subsequently, the reaction of MO-Tga with PPA gave a novel multifunctional additive MO-Tga-PPA. The molecular characteristics and thermal stability of MO-Tga-PPA were studied using techniques like NMR, FTIR, and TGA. The additive was doped at various concentrations such as 1000, 2000, 3000, 4000, and 5000 ppm in polyol to examine their antiwear, antifriction, antioxidant, and anticorrosion performance. It reveals the maximum reduction of 53.85% in the average COF and 25.51% in AWSD at 5000 ppm. The antioxidant activity shows a maximum free radicals inhibition of 97.9% at 3000 ppm using the DPPH. As far as the anticorrosion activity is concerned, the values for the penetration rate, corrosion rate, and weight loss were reduced to 0.015 mpy, 0.082 mdd, and 0.08 mg from the observed values of 0.114 mpy, 0.62 mdd, and 0.60 mg in polyol base oil was observed at 4000 ppm.</p>","PeriodicalId":17182,"journal":{"name":"Journal of the American Oil Chemists Society","volume":"101 5","pages":"501-511"},"PeriodicalIF":1.9000,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Oil Chemists Society","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aocs.12789","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The organometallics like ZDDPs are widely used as multifunctional additives in lubricants for imparting antiwear, antioxidant, and corrosion inhibitor activity. Since it has toxic elements like P, Zn, and S so it is an environmentally toxic, non-biodegradable, and ash-forming additive. In automotive emissions, it also causes poisoning in catalytic converters. Due to environmental concerns, it is an issue of awareness to discover less toxic alternatives for these multifunctional additives despite their potent and economical properties. In this work, MO was reacted in a stoichiometric ratio with Tga, giving the intermediate compound MO-Tga through thiol-ene coupling. Subsequently, the reaction of MO-Tga with PPA gave a novel multifunctional additive MO-Tga-PPA. The molecular characteristics and thermal stability of MO-Tga-PPA were studied using techniques like NMR, FTIR, and TGA. The additive was doped at various concentrations such as 1000, 2000, 3000, 4000, and 5000 ppm in polyol to examine their antiwear, antifriction, antioxidant, and anticorrosion performance. It reveals the maximum reduction of 53.85% in the average COF and 25.51% in AWSD at 5000 ppm. The antioxidant activity shows a maximum free radicals inhibition of 97.9% at 3000 ppm using the DPPH. As far as the anticorrosion activity is concerned, the values for the penetration rate, corrosion rate, and weight loss were reduced to 0.015 mpy, 0.082 mdd, and 0.08 mg from the observed values of 0.114 mpy, 0.62 mdd, and 0.60 mg in polyol base oil was observed at 4000 ppm.
期刊介绍:
The Journal of the American Oil Chemists’ Society (JAOCS) is an international peer-reviewed journal that publishes significant original scientific research and technological advances on fats, oils, oilseed proteins, and related materials through original research articles, invited reviews, short communications, and letters to the editor. We seek to publish reports that will significantly advance scientific understanding through hypothesis driven research, innovations, and important new information pertaining to analysis, properties, processing, products, and applications of these food and industrial resources. Breakthroughs in food science and technology, biotechnology (including genomics, biomechanisms, biocatalysis and bioprocessing), and industrial products and applications are particularly appropriate.
JAOCS also considers reports on the lipid composition of new, unique, and traditional sources of lipids that definitively address a research hypothesis and advances scientific understanding. However, the genus and species of the source must be verified by appropriate means of classification. In addition, the GPS location of the harvested materials and seed or vegetative samples should be deposited in an accredited germplasm repository. Compositional data suitable for Original Research Articles must embody replicated estimate of tissue constituents, such as oil, protein, carbohydrate, fatty acid, phospholipid, tocopherol, sterol, and carotenoid compositions. Other components unique to the specific plant or animal source may be reported. Furthermore, lipid composition papers should incorporate elements of yeartoyear, environmental, and/ or cultivar variations through use of appropriate statistical analyses.