Improved software fault prediction using new code metrics and machine learning algorithms

IF 1.7 3区 计算机科学 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Manpreet Singh, Jitender Kumar Chhabra
{"title":"Improved software fault prediction using new code metrics and machine learning algorithms","authors":"Manpreet Singh,&nbsp;Jitender Kumar Chhabra","doi":"10.1016/j.cola.2023.101253","DOIUrl":null,"url":null,"abstract":"<div><p>Many code metrics exist for bug prediction. However, these metrics are based on the trivial count of code properties and are not sufficient. This research article proposes three new code metrics based on class complexity, coupling, and cohesion to fill the gap. The Promise repository metrics suite's complexity, coupling, and cohesion metrics are replaced by the proposed metrics, and a new metric suite is generated. Experiments show that the proposed metrics suite gives more than 2 % improvement in AUC and precision and approximately 1.5 % in f1-score and recall with fewer code metrics than the existing metrics suite.</p></div>","PeriodicalId":48552,"journal":{"name":"Journal of Computer Languages","volume":"78 ","pages":"Article 101253"},"PeriodicalIF":1.7000,"publicationDate":"2023-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer Languages","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590118423000631","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Many code metrics exist for bug prediction. However, these metrics are based on the trivial count of code properties and are not sufficient. This research article proposes three new code metrics based on class complexity, coupling, and cohesion to fill the gap. The Promise repository metrics suite's complexity, coupling, and cohesion metrics are replaced by the proposed metrics, and a new metric suite is generated. Experiments show that the proposed metrics suite gives more than 2 % improvement in AUC and precision and approximately 1.5 % in f1-score and recall with fewer code metrics than the existing metrics suite.

使用新的代码度量和机器学习算法改进软件故障预测
存在许多用于bug预测的代码度量。然而,这些指标是基于代码属性的琐碎计数,是不够的。本文提出了基于类复杂性、耦合性和内聚性的三种新的代码度量来填补这一空白。Promise存储库度量套件的复杂性、耦合性和内聚性度量被提议的度量所取代,并生成一个新的度量套件。实验表明,与现有度量套件相比,所提出的度量套件在AUC和精度方面提高了2 %以上,在f1得分和召回率方面提高了约1.5 %,代码度量更少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Computer Languages
Journal of Computer Languages Computer Science-Computer Networks and Communications
CiteScore
5.00
自引率
13.60%
发文量
36
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信