{"title":"Testing for signal-to-noise ratio in linear regression: a test under large or massive sample","authors":"Jae H. Kim, Philip I. Ji","doi":"10.1007/s11846-023-00706-0","DOIUrl":null,"url":null,"abstract":"<p>This paper proposes a test for the signal-to-noise ratio applicable to a range of significance tests and model diagnostics in a linear regression model. It is particularly useful when sample size is large or massive, where, as a consequence, conventional tests frequently lead to inappropriate rejection of the null hypothesis. The test is conducted in the context of the traditional <i>F</i>-test, with its critical values increasing with sample size. It maintains desirable size properties under a large or massive sample size, when the null hypothesis is violated by a practically negligible margin. The test is widely applicable to many empirical studies in business and management.</p>","PeriodicalId":20992,"journal":{"name":"Review of Managerial Science","volume":null,"pages":null},"PeriodicalIF":7.8000,"publicationDate":"2023-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Review of Managerial Science","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1007/s11846-023-00706-0","RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MANAGEMENT","Score":null,"Total":0}
引用次数: 0
Abstract
This paper proposes a test for the signal-to-noise ratio applicable to a range of significance tests and model diagnostics in a linear regression model. It is particularly useful when sample size is large or massive, where, as a consequence, conventional tests frequently lead to inappropriate rejection of the null hypothesis. The test is conducted in the context of the traditional F-test, with its critical values increasing with sample size. It maintains desirable size properties under a large or massive sample size, when the null hypothesis is violated by a practically negligible margin. The test is widely applicable to many empirical studies in business and management.
期刊介绍:
Review of Managerial Science (RMS) provides a forum for innovative research from all scientific areas of business administration. The journal publishes original research of high quality and is open to various methodological approaches (analytical modeling, empirical research, experimental work, methodological reasoning etc.). The scope of RMS encompasses – but is not limited to – accounting, auditing, banking, business strategy, corporate governance, entrepreneurship, financial structure and capital markets, health economics, human resources management, information systems, innovation management, insurance, marketing, organization, production and logistics, risk management and taxation. RMS also encourages the submission of papers combining ideas and/or approaches from different areas in an innovative way. Review papers presenting the state of the art of a research area and pointing out new directions for further research are also welcome. The scientific standards of RMS are guaranteed by a rigorous, double-blind peer review process with ad hoc referees and the journal´s internationally composed editorial board.