Emimal M, W Jino Hans, Inbamalar T M, N Mahiban Lindsay
{"title":"Multi-scale EMG classification with spatial-temporal attention for prosthetic hands.","authors":"Emimal M, W Jino Hans, Inbamalar T M, N Mahiban Lindsay","doi":"10.1080/10255842.2023.2287419","DOIUrl":null,"url":null,"abstract":"<p><p>A classification framework for hand gestures using Electromyography (EMG) signals in prosthetic hands is presented. Leveraging the multi-scale characteristics and temporal nature of EMG signals, a Convolutional Neural Network (CNN) is used to extract multi-scale features and classify them with spatial-temporal attention. A multi-scale coarse-grained layer introduced into the input of one-dimensional CNN (1D-CNN) facilitates multi-scale feature extraction. The multi-scale features are fed into the attention layer and subsequently given to the fully connected layer to perform classification. The proposed model achieves classification accuracies of 93.4%, 92.8%, 91.3%, and 94.1% for Ninapro DB1, DB2, DB5, and DB7 respectively, thereby enhancing the confidence of prosthetic hand users.</p>","PeriodicalId":50640,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering","volume":" ","pages":"337-352"},"PeriodicalIF":1.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Biomechanics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10255842.2023.2287419","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/30 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
A classification framework for hand gestures using Electromyography (EMG) signals in prosthetic hands is presented. Leveraging the multi-scale characteristics and temporal nature of EMG signals, a Convolutional Neural Network (CNN) is used to extract multi-scale features and classify them with spatial-temporal attention. A multi-scale coarse-grained layer introduced into the input of one-dimensional CNN (1D-CNN) facilitates multi-scale feature extraction. The multi-scale features are fed into the attention layer and subsequently given to the fully connected layer to perform classification. The proposed model achieves classification accuracies of 93.4%, 92.8%, 91.3%, and 94.1% for Ninapro DB1, DB2, DB5, and DB7 respectively, thereby enhancing the confidence of prosthetic hand users.
期刊介绍:
The primary aims of Computer Methods in Biomechanics and Biomedical Engineering are to provide a means of communicating the advances being made in the areas of biomechanics and biomedical engineering and to stimulate interest in the continually emerging computer based technologies which are being applied in these multidisciplinary subjects. Computer Methods in Biomechanics and Biomedical Engineering will also provide a focus for the importance of integrating the disciplines of engineering with medical technology and clinical expertise. Such integration will have a major impact on health care in the future.