Mengqi Zhang, Qin Li, Lei Nie, Ping Hai, Wei Zhang, Wangmao Caiji, Wenyan Liang, Hui Zhang, Hengchang Zang
{"title":"Nondestructive rapid identification of wild Cordyceps sinensis with portable instrument.","authors":"Mengqi Zhang, Qin Li, Lei Nie, Ping Hai, Wei Zhang, Wangmao Caiji, Wenyan Liang, Hui Zhang, Hengchang Zang","doi":"10.1002/pca.3310","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Cordyceps sinensis (CS) is a precious medicinal fungus. Wild CS (WCS) and artificial CS (ACS) are destroyed for their identification using traditional methods, which are time consuming and labor-intensive. Therefore, it is crucial to establish a nondestructive identification method to rapidly screen WCS.</p><p><strong>Objective: </strong>The aim of this study was to provide technical support for rapid screening of CS and evaluation of its quality. The applicability of the model was improved through model transfer.</p><p><strong>Methods: </strong>In this study, continuous wavelet transform was used to analyze the differences in moisture content and active components between WCS and ACS from the perspective of characteristic molecular groups. A portable instrument and a laboratory benchtop instrument were used to determine CS spectra. Partial least squares discrimination analysis was conducted for the identification of WCS and ACS while preserving the original shape of CS. Moreover, improved principal component analysis was utilized to transfer the model between the two types of near-infrared spectroscopy (NIRS) instruments.</p><p><strong>Results: </strong>The results demonstrated that three peaks, at 1443, 1941, and 2183 nm, were characteristic absorption peaks. The model based on NIRS could initially provide rapid differentiation between WCS and ACS. At the same time, the accuracy of the external test set was further improved to over 95% through forward transfer.</p><p><strong>Conclusion: </strong>Therefore, this method could be used for rapid screening of WCS and provides technical support for the nondestructive identification of CS and initial assessment of CS quality.</p>","PeriodicalId":20095,"journal":{"name":"Phytochemical Analysis","volume":" ","pages":"1540-1549"},"PeriodicalIF":3.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytochemical Analysis","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pca.3310","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/30 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Cordyceps sinensis (CS) is a precious medicinal fungus. Wild CS (WCS) and artificial CS (ACS) are destroyed for their identification using traditional methods, which are time consuming and labor-intensive. Therefore, it is crucial to establish a nondestructive identification method to rapidly screen WCS.
Objective: The aim of this study was to provide technical support for rapid screening of CS and evaluation of its quality. The applicability of the model was improved through model transfer.
Methods: In this study, continuous wavelet transform was used to analyze the differences in moisture content and active components between WCS and ACS from the perspective of characteristic molecular groups. A portable instrument and a laboratory benchtop instrument were used to determine CS spectra. Partial least squares discrimination analysis was conducted for the identification of WCS and ACS while preserving the original shape of CS. Moreover, improved principal component analysis was utilized to transfer the model between the two types of near-infrared spectroscopy (NIRS) instruments.
Results: The results demonstrated that three peaks, at 1443, 1941, and 2183 nm, were characteristic absorption peaks. The model based on NIRS could initially provide rapid differentiation between WCS and ACS. At the same time, the accuracy of the external test set was further improved to over 95% through forward transfer.
Conclusion: Therefore, this method could be used for rapid screening of WCS and provides technical support for the nondestructive identification of CS and initial assessment of CS quality.
期刊介绍:
Phytochemical Analysis is devoted to the publication of original articles concerning the development, improvement, validation and/or extension of application of analytical methodology in the plant sciences. The spectrum of coverage is broad, encompassing methods and techniques relevant to the detection (including bio-screening), extraction, separation, purification, identification and quantification of compounds in plant biochemistry, plant cellular and molecular biology, plant biotechnology, the food sciences, agriculture and horticulture. The Journal publishes papers describing significant novelty in the analysis of whole plants (including algae), plant cells, tissues and organs, plant-derived extracts and plant products (including those which have been partially or completely refined for use in the food, agrochemical, pharmaceutical and related industries). All forms of physical, chemical, biochemical, spectroscopic, radiometric, electrometric, chromatographic, metabolomic and chemometric investigations of plant products (monomeric species as well as polymeric molecules such as nucleic acids, proteins, lipids and carbohydrates) are included within the remit of the Journal. Papers dealing with novel methods relating to areas such as data handling/ data mining in plant sciences will also be welcomed.