CBP-mediated FOXO4 acetylation facilitates postmenopausal osteoporosis (PMO) progression through the inhibition of the Wnt/β-catenin signaling pathway.
{"title":"CBP-mediated FOXO4 acetylation facilitates postmenopausal osteoporosis (PMO) progression through the inhibition of the Wnt/β-catenin signaling pathway.","authors":"Qiubo Huang, Jiang Wang","doi":"10.14670/HH-18-680","DOIUrl":null,"url":null,"abstract":"<p><p>FOXO4 was previously identified as a potential biomarker and therapeutic target for postmenopausal osteoporosis (PMO) using bioinformatic analysis, but its specific function and molecular mechanism in the progression of osteoporosis was not reported. The current study was designed to investigate the biological function and underlying mechanism of FOXO4 in PMO. Our results showed that FOXO4 expression was significantly upregulated in the serum samples of PMO patients, which was also negatively correlated with the expression of osteogenesis genes (OCN and ALP). In addition, FOXO4 depletion alleviated osteoporosis by facilitating osteogenic differentiation and inhibiting adipogenic differentiation in human bone marrow mesenchymal stem cells (hBMSCs). Overexpression of FOXO4 exerted the opposite effects on the osteogenic/adipogenic differentiation in hBMSCs. Moreover, FOXO4 knockdown activated the Wnt/β-catenin signaling whereas the inhibition of Wnt/β-catenin signaling overturned the effects of FOXO4 deficiency on osteoporosis. Furthermore, FOXO4 upregulation in PMO was caused by CBP-induced acetylation. In summary, our data demonstrated that FOXO4 was a potent biomarker for PMO and mediated the balance between osteogenesis and adipogenesis in hBMSCs by regulating Wnt/β-catenin signaling.</p>","PeriodicalId":13164,"journal":{"name":"Histology and histopathology","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Histology and histopathology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.14670/HH-18-680","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/27 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
FOXO4 was previously identified as a potential biomarker and therapeutic target for postmenopausal osteoporosis (PMO) using bioinformatic analysis, but its specific function and molecular mechanism in the progression of osteoporosis was not reported. The current study was designed to investigate the biological function and underlying mechanism of FOXO4 in PMO. Our results showed that FOXO4 expression was significantly upregulated in the serum samples of PMO patients, which was also negatively correlated with the expression of osteogenesis genes (OCN and ALP). In addition, FOXO4 depletion alleviated osteoporosis by facilitating osteogenic differentiation and inhibiting adipogenic differentiation in human bone marrow mesenchymal stem cells (hBMSCs). Overexpression of FOXO4 exerted the opposite effects on the osteogenic/adipogenic differentiation in hBMSCs. Moreover, FOXO4 knockdown activated the Wnt/β-catenin signaling whereas the inhibition of Wnt/β-catenin signaling overturned the effects of FOXO4 deficiency on osteoporosis. Furthermore, FOXO4 upregulation in PMO was caused by CBP-induced acetylation. In summary, our data demonstrated that FOXO4 was a potent biomarker for PMO and mediated the balance between osteogenesis and adipogenesis in hBMSCs by regulating Wnt/β-catenin signaling.
期刊介绍:
HISTOLOGY AND HISTOPATHOLOGY is a peer-reviewed international journal, the purpose of which is to publish original and review articles in all fields of the microscopical morphology, cell biology and tissue engineering; high quality is the overall consideration. Its format is the standard international size of 21 x 27.7 cm. One volume is published every year (more than 1,300 pages, approximately 90 original works and 40 reviews). Each volume consists of 12 numbers published monthly online. The printed version of the journal includes 4 books every year; each of them compiles 3 numbers previously published online.