Identifying the cancer-associated fibroblast signature to predict the prognosis and immunotherapy response in patients with lung squamous cell carcinoma.
IF 1.7 4区 医学Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
{"title":"Identifying the cancer-associated fibroblast signature to predict the prognosis and immunotherapy response in patients with lung squamous cell carcinoma.","authors":"Yinhui Zhu, Yingqun Zhu, Sirui Chen, Qian Cai","doi":"10.1080/10255842.2023.2287418","DOIUrl":null,"url":null,"abstract":"<p><p>Cancer-associated fibroblasts (CAFs) are an important component of the tumor microenvironment that contribute toward the development of tumors. This study aimed to establish a new algorithm based on CAF scores to predict the prognosis and immunotherapy response in patients with lung squamous cell carcinoma (LUSC). The RNA-seq data of LUSC patients were obtained from two databases and merged after removing inter-batch differences. The CAF-related data for each sample were obtained through three different algorithms. Consistency cluster analysis was performed to obtain different CAF clusters, which were analyzed to identify differentially expressed genes. These were subjected to uniform cluster analysis to obtain different gene clusters. The Boruta algorithm was used to calculate the CAF score. Three CAF clusters and two gene clusters were obtained, all of which differed in their patient prognoses and the content of infiltrating immune cells. Patients with high CAF scores exhibited worse overall survival, higher expression of biomarkers related to immune checkpoints and immune activity, and lower tumor mutation burden. The CAF score could also predict the immunotherapy response of patients. This study suggests that the CAF score can accurately predict the prognosis and immunotherapy response of LUSC patients.</p>","PeriodicalId":50640,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering","volume":" ","pages":"326-336"},"PeriodicalIF":1.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Biomechanics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10255842.2023.2287418","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/28 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Cancer-associated fibroblasts (CAFs) are an important component of the tumor microenvironment that contribute toward the development of tumors. This study aimed to establish a new algorithm based on CAF scores to predict the prognosis and immunotherapy response in patients with lung squamous cell carcinoma (LUSC). The RNA-seq data of LUSC patients were obtained from two databases and merged after removing inter-batch differences. The CAF-related data for each sample were obtained through three different algorithms. Consistency cluster analysis was performed to obtain different CAF clusters, which were analyzed to identify differentially expressed genes. These were subjected to uniform cluster analysis to obtain different gene clusters. The Boruta algorithm was used to calculate the CAF score. Three CAF clusters and two gene clusters were obtained, all of which differed in their patient prognoses and the content of infiltrating immune cells. Patients with high CAF scores exhibited worse overall survival, higher expression of biomarkers related to immune checkpoints and immune activity, and lower tumor mutation burden. The CAF score could also predict the immunotherapy response of patients. This study suggests that the CAF score can accurately predict the prognosis and immunotherapy response of LUSC patients.
期刊介绍:
The primary aims of Computer Methods in Biomechanics and Biomedical Engineering are to provide a means of communicating the advances being made in the areas of biomechanics and biomedical engineering and to stimulate interest in the continually emerging computer based technologies which are being applied in these multidisciplinary subjects. Computer Methods in Biomechanics and Biomedical Engineering will also provide a focus for the importance of integrating the disciplines of engineering with medical technology and clinical expertise. Such integration will have a major impact on health care in the future.