Particle-phase accretion forms dimer esters in pinene secondary organic aerosol

IF 44.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Science Pub Date : 2023-11-16 DOI:10.1126/science.adi0857
Christopher M. Kenseth, Nicholas J. Hafeman, Samir P. Rezgui, Jing Chen, Yuanlong Huang, Nathan F. Dalleska, Henrik G. Kjaergaard, Brian M. Stoltz, John H. Seinfeld, Paul O. Wennberg
{"title":"Particle-phase accretion forms dimer esters in pinene secondary organic aerosol","authors":"Christopher M. Kenseth,&nbsp;Nicholas J. Hafeman,&nbsp;Samir P. Rezgui,&nbsp;Jing Chen,&nbsp;Yuanlong Huang,&nbsp;Nathan F. Dalleska,&nbsp;Henrik G. Kjaergaard,&nbsp;Brian M. Stoltz,&nbsp;John H. Seinfeld,&nbsp;Paul O. Wennberg","doi":"10.1126/science.adi0857","DOIUrl":null,"url":null,"abstract":"<div >Secondary organic aerosol (SOA) is ubiquitous in the atmosphere and plays a pivotal role in climate, air quality, and health. The production of low-volatility dimeric compounds through accretion reactions is a key aspect of SOA formation. However, despite extensive study, the structures and thus the formation mechanisms of dimers in SOA remain largely uncharacterized. In this work, we elucidate the structures of several major dimer esters in SOA from ozonolysis of α-pinene and β-pinene—substantial global SOA sources—through independent synthesis of authentic standards. We show that these dimer esters are formed in the particle phase and propose a mechanism of nucleophilic addition of alcohols to a cyclic acylperoxyhemiacetal. This chemistry likely represents a general pathway to dimeric compounds in ambient SOA.</div>","PeriodicalId":21678,"journal":{"name":"Science","volume":"382 6672","pages":""},"PeriodicalIF":44.7000,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/science.adi0857","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Secondary organic aerosol (SOA) is ubiquitous in the atmosphere and plays a pivotal role in climate, air quality, and health. The production of low-volatility dimeric compounds through accretion reactions is a key aspect of SOA formation. However, despite extensive study, the structures and thus the formation mechanisms of dimers in SOA remain largely uncharacterized. In this work, we elucidate the structures of several major dimer esters in SOA from ozonolysis of α-pinene and β-pinene—substantial global SOA sources—through independent synthesis of authentic standards. We show that these dimer esters are formed in the particle phase and propose a mechanism of nucleophilic addition of alcohols to a cyclic acylperoxyhemiacetal. This chemistry likely represents a general pathway to dimeric compounds in ambient SOA.
颗粒相吸积在蒎烯二级有机气溶胶中形成二聚酯。
二次有机气溶胶(SOA)在大气中无处不在,在气候、空气质量和健康中起着关键作用。通过吸积反应生产低挥发性二聚体化合物是SOA形成的一个关键方面。然而,尽管进行了广泛的研究,但SOA中二聚体的结构及其形成机制在很大程度上仍未被描述。在这项工作中,我们通过独立合成可靠的标准,从臭氧分解α-蒎烯和β-蒎烯中阐明了SOA中几种主要二聚酯的结构,这些二聚酯是全球SOA的重要来源。我们证明了这些二聚酯是在颗粒相形成的,并提出了一种亲核加成醇到环酰基过氧半缩醛的机制。这种化学反应可能代表了在SOA环境中生成二聚体化合物的一般途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science
Science 综合性期刊-综合性期刊
CiteScore
61.10
自引率
0.90%
发文量
0
审稿时长
2.1 months
期刊介绍: Science is a leading outlet for scientific news, commentary, and cutting-edge research. Through its print and online incarnations, Science reaches an estimated worldwide readership of more than one million. Science’s authorship is global too, and its articles consistently rank among the world's most cited research. Science serves as a forum for discussion of important issues related to the advancement of science by publishing material on which a consensus has been reached as well as including the presentation of minority or conflicting points of view. Accordingly, all articles published in Science—including editorials, news and comment, and book reviews—are signed and reflect the individual views of the authors and not official points of view adopted by AAAS or the institutions with which the authors are affiliated. Science seeks to publish those papers that are most influential in their fields or across fields and that will significantly advance scientific understanding. Selected papers should present novel and broadly important data, syntheses, or concepts. They should merit recognition by the wider scientific community and general public provided by publication in Science, beyond that provided by specialty journals. Science welcomes submissions from all fields of science and from any source. The editors are committed to the prompt evaluation and publication of submitted papers while upholding high standards that support reproducibility of published research. Science is published weekly; selected papers are published online ahead of print.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信