Passive Electrical and Optical Methods of Ultra-Short Pulse Expansion for Event Timer-Based TDC in PPM Receiver

IF 2.6 3区 工程技术 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Arturs Aboltins, Tatjana Solovjova, Janis Semenako, Romans Kusnins, Sandis Migla, Pauls Eriks Sics, Oskars Selis, Nikolajs Tihomorskis, Dmitrijs Prigunovs, Armands Ostrovskis, Sandis Spolitis
{"title":"Passive Electrical and Optical Methods of Ultra-Short Pulse Expansion for Event Timer-Based TDC in PPM Receiver","authors":"Arturs Aboltins, Tatjana Solovjova, Janis Semenako, Romans Kusnins, Sandis Migla, Pauls Eriks Sics, Oskars Selis, Nikolajs Tihomorskis, Dmitrijs Prigunovs, Armands Ostrovskis, Sandis Spolitis","doi":"10.3390/electronics12224634","DOIUrl":null,"url":null,"abstract":"The energy efficiency of a communication system using pulse position modulation (PPM) can be increased by reducing the duration of the pulses transmitted over the communication channel to several tens of picoseconds. The employment of an event timer device as a time-to-digital converter (TDC) for demodulation allows the use of PPM with many pulse positions and achieves competitive data transfer speeds. However, along with several-picosecond accuracy of modern event timers, they require a pulse duration of several hundred picoseconds for precise detection. This research is devoted to developing passive techniques for precise pulse expansion from tens of picoseconds to hundreds of picoseconds. We propose two methods: the electrical method, which employs a microstrip low-pass filter (LPF), and the optical method, which uses fiber Bragg grating (FBG). This research offers a detailed analysis of distortion-free pulse expansion requirements, the design of prototypes meeting these requirements, and experimental design verification. Theoretical background, mathematical models, and results of experimental validation of the proposed pulse expansion methods within the laboratory transmitted reference pulse-position modulation (TR-PPM) communication system are provided.","PeriodicalId":11646,"journal":{"name":"Electronics","volume":"20 1","pages":"0"},"PeriodicalIF":2.6000,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/electronics12224634","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The energy efficiency of a communication system using pulse position modulation (PPM) can be increased by reducing the duration of the pulses transmitted over the communication channel to several tens of picoseconds. The employment of an event timer device as a time-to-digital converter (TDC) for demodulation allows the use of PPM with many pulse positions and achieves competitive data transfer speeds. However, along with several-picosecond accuracy of modern event timers, they require a pulse duration of several hundred picoseconds for precise detection. This research is devoted to developing passive techniques for precise pulse expansion from tens of picoseconds to hundreds of picoseconds. We propose two methods: the electrical method, which employs a microstrip low-pass filter (LPF), and the optical method, which uses fiber Bragg grating (FBG). This research offers a detailed analysis of distortion-free pulse expansion requirements, the design of prototypes meeting these requirements, and experimental design verification. Theoretical background, mathematical models, and results of experimental validation of the proposed pulse expansion methods within the laboratory transmitted reference pulse-position modulation (TR-PPM) communication system are provided.
PPM接收机中基于事件定时器的TDC超短脉冲展开的无源电光方法
使用脉冲位置调制(PPM)的通信系统的能量效率可以通过将在通信信道上传输的脉冲持续时间减少到几十皮秒来提高。使用事件定时器设备作为时间-数字转换器(TDC)进行解调,允许在多个脉冲位置使用PPM,并实现具有竞争力的数据传输速度。然而,随着现代事件计时器精度达到几皮秒,它们需要几百皮秒的脉冲持续时间才能进行精确检测。本研究致力于开发从数十皮秒到数百皮秒的精确脉冲扩展的无源技术。我们提出了两种方法:采用微带低通滤波器(LPF)的电学方法和使用光纤布拉格光栅(FBG)的光学方法。本研究详细分析了无失真脉冲扩展的要求,设计了满足这些要求的原型,并进行了实验设计验证。给出了在实验室传输参考脉冲位置调制(TR-PPM)通信系统中所提出的脉冲扩展方法的理论背景、数学模型和实验验证结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Electronics
Electronics Computer Science-Computer Networks and Communications
CiteScore
1.10
自引率
10.30%
发文量
3515
审稿时长
16.71 days
期刊介绍: Electronics (ISSN 2079-9292; CODEN: ELECGJ) is an international, open access journal on the science of electronics and its applications published quarterly online by MDPI.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信