Influence of self-assembly on the reactive sulfhydryl and antioxidant activity of aggregation-prone ovalbumin-derived peptides

Amanda Clairoux, Chibuike C. Udenigwe
{"title":"Influence of self-assembly on the reactive sulfhydryl and antioxidant activity of aggregation-prone ovalbumin-derived peptides","authors":"Amanda Clairoux, Chibuike C. Udenigwe","doi":"10.31665/jfb.2023.18346","DOIUrl":null,"url":null,"abstract":"Ovalbumin-derived peptides IFYCPIAIM, NIFYCPIAIM and YCPIAIMSA, containing a common region YCPIAIM, were previously identified as aggregation-prone peptides with variable fibril formation. In this study, we elucidated self-assembly mechanisms of the peptides, by determining the influence of self-assembly on sulfhydryl group accessibility. The free sulfhydryl group content and antioxidant capacity results demonstrate that the peptides assemble into β-sheets, possibly involving hydrogen bonding with the sulfhydryl groups. NIFYCPIAIM, IFYCPIAIM and YCPIAIMSA, in decreasing order, had the largest particle size, thioflavin T fluorescence, reactive sulfhydryl group content, and antioxidant activities. This demonstrates that the reactive sulfhydryl group content, which is influenced by the cysteine residue position relative to the N-terminal of the peptide, is dependent on fibrillation. Rheological studies further demonstrated the non-Newtonian shear-thinning behavior of the peptides. The results provide valuable insight on peptide self-assembly, which is imperative for future design of bioactive hydrogels with promising biomechanical properties for biomaterial applications.","PeriodicalId":15882,"journal":{"name":"Journal of Food Bioactives","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Bioactives","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31665/jfb.2023.18346","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Ovalbumin-derived peptides IFYCPIAIM, NIFYCPIAIM and YCPIAIMSA, containing a common region YCPIAIM, were previously identified as aggregation-prone peptides with variable fibril formation. In this study, we elucidated self-assembly mechanisms of the peptides, by determining the influence of self-assembly on sulfhydryl group accessibility. The free sulfhydryl group content and antioxidant capacity results demonstrate that the peptides assemble into β-sheets, possibly involving hydrogen bonding with the sulfhydryl groups. NIFYCPIAIM, IFYCPIAIM and YCPIAIMSA, in decreasing order, had the largest particle size, thioflavin T fluorescence, reactive sulfhydryl group content, and antioxidant activities. This demonstrates that the reactive sulfhydryl group content, which is influenced by the cysteine residue position relative to the N-terminal of the peptide, is dependent on fibrillation. Rheological studies further demonstrated the non-Newtonian shear-thinning behavior of the peptides. The results provide valuable insight on peptide self-assembly, which is imperative for future design of bioactive hydrogels with promising biomechanical properties for biomaterial applications.
自组装对易聚集的卵清蛋白衍生多肽的活性巯基和抗氧化活性的影响
卵清蛋白衍生的多肽IFYCPIAIM、NIFYCPIAIM和YCPIAIMSA含有一个共同区域YCPIAIM,以前被鉴定为具有可变纤维形成的聚集倾向多肽。在这项研究中,我们通过测定自组装对巯基可及性的影响来阐明肽的自组装机制。游离巯基含量和抗氧化能力的结果表明,肽聚集成β-片,可能与巯基形成氢键。NIFYCPIAIM、IFYCPIAIM和YCPIAIMSA的粒径、硫黄素T荧光、活性巯基含量和抗氧化活性依次由大到小。这表明,活性巯基的含量,这是由半胱氨酸残基位置相对于肽的n端影响,是依赖于纤颤。流变学研究进一步证明了多肽的非牛顿剪切变薄行为。这些结果为多肽自组装提供了有价值的见解,这对未来设计具有生物力学性能的生物活性水凝胶具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信