Sumudu N. Warnakulasuriya, Takuji Tanaka, Janitha P. D. Wanasundara
{"title":"Canola meal valorization via acid hydrolysis to generate free amino acids","authors":"Sumudu N. Warnakulasuriya, Takuji Tanaka, Janitha P. D. Wanasundara","doi":"10.1002/aocs.12739","DOIUrl":null,"url":null,"abstract":"<p>This study investigated an alternative approach to valorizing canola proteins by hydrolyzing them to generate amino acids (AAs). Pre-treatment of cold-pressed (CP) cake and desolventized-toasted (DT) meal with ethanol (99%, vol/vol) followed by protein separation was studied as process optimizations to maximize protein recovery with higher purity. The optimum ethanol pre-treatment conditions to achieve a meal containing less than 1% oil was reached at a meal-to-ethanol ratio of 1:4 (wt:wt) and 50°C for 30 min extraction. The protein recovery reached the maximum at pH 12 and a meal-to-solvent ratio of 1:10 (wt:vol), yielding 73% and 33% recovery from ethanol pre-treated CP and DT meals, respectively, in a single extraction. Untreated and ethanol pre-treated meals were hydrolyzed with 6 N HCl (protein-to-acid ratio of 5 mg:2 mL) for 24 h at 110°C. The ethanol pre-treatment improved AA recovery and released 373 mg AA/g dry CP meal biomass (dbm) compared to 279 mg AA/g untreated CP cake dbm. However, no improvement in AA recovery upon ethanol pre-treatment of DT meal. Sulfuric acid was examined as an alternative acid. More than 700 mg AA/g CP protein were released with 6 N H<sub>2</sub>SO<sub>4</sub>, while for DT meal proteins, a 10 N concentration was needed to achieve a closer value. Commercial canola meals can be utilized for generating free AAs; however, the meal processing history may affect the yield.</p>","PeriodicalId":17182,"journal":{"name":"Journal of the American Oil Chemists Society","volume":"101 1","pages":"41-57"},"PeriodicalIF":1.9000,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aocs.12739","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Oil Chemists Society","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aocs.12739","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigated an alternative approach to valorizing canola proteins by hydrolyzing them to generate amino acids (AAs). Pre-treatment of cold-pressed (CP) cake and desolventized-toasted (DT) meal with ethanol (99%, vol/vol) followed by protein separation was studied as process optimizations to maximize protein recovery with higher purity. The optimum ethanol pre-treatment conditions to achieve a meal containing less than 1% oil was reached at a meal-to-ethanol ratio of 1:4 (wt:wt) and 50°C for 30 min extraction. The protein recovery reached the maximum at pH 12 and a meal-to-solvent ratio of 1:10 (wt:vol), yielding 73% and 33% recovery from ethanol pre-treated CP and DT meals, respectively, in a single extraction. Untreated and ethanol pre-treated meals were hydrolyzed with 6 N HCl (protein-to-acid ratio of 5 mg:2 mL) for 24 h at 110°C. The ethanol pre-treatment improved AA recovery and released 373 mg AA/g dry CP meal biomass (dbm) compared to 279 mg AA/g untreated CP cake dbm. However, no improvement in AA recovery upon ethanol pre-treatment of DT meal. Sulfuric acid was examined as an alternative acid. More than 700 mg AA/g CP protein were released with 6 N H2SO4, while for DT meal proteins, a 10 N concentration was needed to achieve a closer value. Commercial canola meals can be utilized for generating free AAs; however, the meal processing history may affect the yield.
期刊介绍:
The Journal of the American Oil Chemists’ Society (JAOCS) is an international peer-reviewed journal that publishes significant original scientific research and technological advances on fats, oils, oilseed proteins, and related materials through original research articles, invited reviews, short communications, and letters to the editor. We seek to publish reports that will significantly advance scientific understanding through hypothesis driven research, innovations, and important new information pertaining to analysis, properties, processing, products, and applications of these food and industrial resources. Breakthroughs in food science and technology, biotechnology (including genomics, biomechanisms, biocatalysis and bioprocessing), and industrial products and applications are particularly appropriate.
JAOCS also considers reports on the lipid composition of new, unique, and traditional sources of lipids that definitively address a research hypothesis and advances scientific understanding. However, the genus and species of the source must be verified by appropriate means of classification. In addition, the GPS location of the harvested materials and seed or vegetative samples should be deposited in an accredited germplasm repository. Compositional data suitable for Original Research Articles must embody replicated estimate of tissue constituents, such as oil, protein, carbohydrate, fatty acid, phospholipid, tocopherol, sterol, and carotenoid compositions. Other components unique to the specific plant or animal source may be reported. Furthermore, lipid composition papers should incorporate elements of yeartoyear, environmental, and/ or cultivar variations through use of appropriate statistical analyses.