{"title":"Estimation of time-varying kernel densities and chronology of the impact of COVID-19 on financial markets","authors":"Matthieu Garcin, Jules Klein, Sana Laaribi","doi":"10.1080/02664763.2023.2272226","DOIUrl":null,"url":null,"abstract":"The time-varying kernel density estimation relies on two free parameters: the bandwidth and the discount factor. We propose to select these parameters so as to minimize a criterion consistent with the traditional requirements of the validation of a probability density forecast. These requirements are both the uniformity and the independence of the so-called probability integral transforms, which are the forecast time-varying cumulated distributions applied to the observations. We thus build a new numerical criterion incorporating both the uniformity and independence properties by the mean of an adapted Kolmogorov-Smirnov statistic. We apply this method to financial markets during the COVID-19 crisis. We determine the time-varying density of daily price returns of several stock indices and, using various divergence statistics, we are able to describe the chronology of the crisis as well as regional disparities. For instance, we observe a more limited impact of COVID-19 on financial markets in China, a strong impact in the US, and a slow recovery in Europe.","PeriodicalId":15239,"journal":{"name":"Journal of Applied Statistics","volume":"326 ","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/02664763.2023.2272226","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 11
Abstract
The time-varying kernel density estimation relies on two free parameters: the bandwidth and the discount factor. We propose to select these parameters so as to minimize a criterion consistent with the traditional requirements of the validation of a probability density forecast. These requirements are both the uniformity and the independence of the so-called probability integral transforms, which are the forecast time-varying cumulated distributions applied to the observations. We thus build a new numerical criterion incorporating both the uniformity and independence properties by the mean of an adapted Kolmogorov-Smirnov statistic. We apply this method to financial markets during the COVID-19 crisis. We determine the time-varying density of daily price returns of several stock indices and, using various divergence statistics, we are able to describe the chronology of the crisis as well as regional disparities. For instance, we observe a more limited impact of COVID-19 on financial markets in China, a strong impact in the US, and a slow recovery in Europe.
期刊介绍:
Journal of Applied Statistics provides a forum for communication between both applied statisticians and users of applied statistical techniques across a wide range of disciplines. These areas include business, computing, economics, ecology, education, management, medicine, operational research and sociology, but papers from other areas are also considered. The editorial policy is to publish rigorous but clear and accessible papers on applied techniques. Purely theoretical papers are avoided but those on theoretical developments which clearly demonstrate significant applied potential are welcomed. Each paper is submitted to at least two independent referees.