{"title":"Plasma-enhanced atomic layer deposition of crystalline GaN thin films on quartz substrates with sharp interfaces","authors":"Sanjie Liu, Yangfeng Li, Qing Liu, Jiayou Tao, Xinhe Zheng","doi":"10.1116/6.0002639","DOIUrl":null,"url":null,"abstract":"Polycrystalline hexagonal GaN films were deposited directly on amorphous quartz (fused glass) substrates at 250 °C by plasma-enhanced atomic layer deposition. An atomically sharp GaN/quartz interface is observed from transmission electron microscopy images, which is further demonstrated by x-ray reflectivity measurements. The atomic force microscopy image reveals a smooth surface of GaN. The concentrations of oxygen and carbon impurities in GaN are 6.3 and 0.64%, respectively, according to x-ray photoelectron spectroscopy analysis. The electron mobility measured by Hall is 1.33 cm2 V−1 s−1. The results show that high-quality GaN films are obtained on amorphous quartz substrates, and GaN/quartz can be used as a template for the fabrication of GaN-based devices.","PeriodicalId":17490,"journal":{"name":"Journal of Vacuum Science & Technology A","volume":"46 1","pages":"0"},"PeriodicalIF":2.4000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vacuum Science & Technology A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1116/6.0002639","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0
Abstract
Polycrystalline hexagonal GaN films were deposited directly on amorphous quartz (fused glass) substrates at 250 °C by plasma-enhanced atomic layer deposition. An atomically sharp GaN/quartz interface is observed from transmission electron microscopy images, which is further demonstrated by x-ray reflectivity measurements. The atomic force microscopy image reveals a smooth surface of GaN. The concentrations of oxygen and carbon impurities in GaN are 6.3 and 0.64%, respectively, according to x-ray photoelectron spectroscopy analysis. The electron mobility measured by Hall is 1.33 cm2 V−1 s−1. The results show that high-quality GaN films are obtained on amorphous quartz substrates, and GaN/quartz can be used as a template for the fabrication of GaN-based devices.
期刊介绍:
Journal of Vacuum Science & Technology A publishes reports of original research, letters, and review articles that focus on fundamental scientific understanding of interfaces, surfaces, plasmas and thin films and on using this understanding to advance the state-of-the-art in various technological applications.