Determining the structure and stability of essential oil-sunflower wax and beeswax oleogels

IF 1.9 4区 农林科学 Q3 CHEMISTRY, APPLIED
Hatice Çokay, Mustafa Öğütcü
{"title":"Determining the structure and stability of essential oil-sunflower wax and beeswax oleogels","authors":"Hatice Çokay,&nbsp;Mustafa Öğütcü","doi":"10.1002/aocs.12745","DOIUrl":null,"url":null,"abstract":"<p>In this study, essential oil oleogels were produced using eucalyptus, lavender, lemon peel and tea tree oils with sunflower and beeswax. The physicochemical, thermal, textural, and structural features of the oleogels were determined. For the essential oils used, an addition level of less than 15% of beeswax (BW) was insufficient to form stable oleogels, whereas an addition level of 10% of sunflower wax (SW) was sufficient to form stable oleogels. The acid and peroxide values of the gels were higher than those of the oils. All of the oleogels exhibited peaks around 3.70 and 4.10, indicating the presence of <i>β</i>' polymorphic forms. The hardness and stickiness values of the oleogels were influenced by the type and level of wax addition, as well as the viscosity of the oil used. Based on the thermal analysis results, the oleogels based on beeswax exhibited lower melting properties compared to those based on sunflower wax. The thermogravimetric data indicated that the polymeric matrices formed by the waxes, which depended on the type and level of wax addition, affected the vaporization of the volatiles. In conclusion, oleogels represent a green and sustainable approach for reducing the loss of volatile or bioactive compounds from various essential oils, which are widely used in the food, cosmetics, and pharmaceutical industries.</p>","PeriodicalId":17182,"journal":{"name":"Journal of the American Oil Chemists Society","volume":"100 12","pages":"993-1002"},"PeriodicalIF":1.9000,"publicationDate":"2023-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Oil Chemists Society","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aocs.12745","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, essential oil oleogels were produced using eucalyptus, lavender, lemon peel and tea tree oils with sunflower and beeswax. The physicochemical, thermal, textural, and structural features of the oleogels were determined. For the essential oils used, an addition level of less than 15% of beeswax (BW) was insufficient to form stable oleogels, whereas an addition level of 10% of sunflower wax (SW) was sufficient to form stable oleogels. The acid and peroxide values of the gels were higher than those of the oils. All of the oleogels exhibited peaks around 3.70 and 4.10, indicating the presence of β' polymorphic forms. The hardness and stickiness values of the oleogels were influenced by the type and level of wax addition, as well as the viscosity of the oil used. Based on the thermal analysis results, the oleogels based on beeswax exhibited lower melting properties compared to those based on sunflower wax. The thermogravimetric data indicated that the polymeric matrices formed by the waxes, which depended on the type and level of wax addition, affected the vaporization of the volatiles. In conclusion, oleogels represent a green and sustainable approach for reducing the loss of volatile or bioactive compounds from various essential oils, which are widely used in the food, cosmetics, and pharmaceutical industries.

测定精油-向日葵蜡和蜂蜡油凝胶的结构和稳定性
本研究以桉树、薰衣草、柠檬皮、茶树精油、葵花籽油和蜂蜡为原料制备精油油凝胶。测定了油凝胶的物理化学、热、结构和结构特征。对于所使用的精油,蜂蜡(BW)的添加水平低于15%不足以形成稳定的油凝胶,而向日葵蜡(SW)的添加水平为10%足以形成稳定的油凝胶。凝胶的酸值和过氧化值高于油。所有油凝胶均在3.70和4.10附近出现峰,表明存在β′多态形式。油凝胶的硬度和粘性值受蜡添加种类和水平以及所用油的粘度的影响。热分析结果表明,蜂蜡基油凝胶的熔融性能低于向日葵蜡基油凝胶。热重数据表明,蜡形成的聚合物基体对挥发物的蒸发有影响,这取决于蜡加入的种类和水平。总之,油凝胶代表了一种绿色和可持续的方法,可以减少各种精油中挥发性或生物活性化合物的损失,这些精油广泛应用于食品,化妆品和制药行业。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.10
自引率
5.00%
发文量
95
审稿时长
2.4 months
期刊介绍: The Journal of the American Oil Chemists’ Society (JAOCS) is an international peer-reviewed journal that publishes significant original scientific research and technological advances on fats, oils, oilseed proteins, and related materials through original research articles, invited reviews, short communications, and letters to the editor. We seek to publish reports that will significantly advance scientific understanding through hypothesis driven research, innovations, and important new information pertaining to analysis, properties, processing, products, and applications of these food and industrial resources. Breakthroughs in food science and technology, biotechnology (including genomics, biomechanisms, biocatalysis and bioprocessing), and industrial products and applications are particularly appropriate. JAOCS also considers reports on the lipid composition of new, unique, and traditional sources of lipids that definitively address a research hypothesis and advances scientific understanding. However, the genus and species of the source must be verified by appropriate means of classification. In addition, the GPS location of the harvested materials and seed or vegetative samples should be deposited in an accredited germplasm repository. Compositional data suitable for Original Research Articles must embody replicated estimate of tissue constituents, such as oil, protein, carbohydrate, fatty acid, phospholipid, tocopherol, sterol, and carotenoid compositions. Other components unique to the specific plant or animal source may be reported. Furthermore, lipid composition papers should incorporate elements of year­to­year, environmental, and/ or cultivar variations through use of appropriate statistical analyses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信