Claudia Martinez-Calderon, Tomoka Oonishi, Kazuo Shiokawa, Jyrki K. Manninen, Alexey Oinats, Mitsunori Ozaki
{"title":"Characteristics and longitudinal extent of VLF quasi-periodic emissions using multi-point ground-based observations","authors":"Claudia Martinez-Calderon, Tomoka Oonishi, Kazuo Shiokawa, Jyrki K. Manninen, Alexey Oinats, Mitsunori Ozaki","doi":"10.1186/s40623-023-01898-1","DOIUrl":null,"url":null,"abstract":"Abstract Quasi-periodic (QP) emissions are a type of magnetospheric ELF/VLF waves characterized by a periodic intensity modulation ranging from tens of seconds to several minutes. Here, we present 63 QP events observed between January 2017 and December 2018. Initially detected at the VLF receiver in Kannuslehto, Finland (KAN, MLAT = 67.7°N, L = 5.5), we proceeded to check whether these events were simultaneously observed at other subauroral receivers. To do so we used the following PWING stations: Athabasca (ATH, MLAT = 61.2°N, L = 4.3, Canada), Gakona (GAK, MLAT = 63.6°N, L = 4.9, Alaska), Husafell (HUS, MLAT = 64.9°N, L = 5.6, Iceland), Istok (IST, MLAT = 60.6°N, L = 6.0, Russia), Kapuskasing (KAP, MLAT = 58.7°N, L = 3.8, Canada), Maimaga (MAM, MLAT = 58.0°N, L = 3.6, Russia), and Nain (NAI, MLAT = 65.8°N, L = 5.0, Canada). We found that: (1) QP emissions detected at KAN had a relatively longer observation time (1–10 h) than other stations, (2) 11.3% of the emissions at KAN were observed showing one-to-one correspondence at IST, and (3) no station other than IST simultaneously observed the same QP emission as KAN. Since KAN and IST are longitudinally separated by 60.6°, we estimate that the maximum meridional spread of conjugated QP emissions should be close to 60° or 4 MLT. Comparison with geomagnetic data shows half of the events are categorized as type II, while the rest are mixed (type I and II). This study is the first to clarify the longitudinal spread of QP waves observed on the ground by analyzing simultaneous observations over 2 years using multiple ground stations. Graphical Abstract","PeriodicalId":11409,"journal":{"name":"Earth, Planets and Space","volume":"26 1","pages":"0"},"PeriodicalIF":3.0000,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth, Planets and Space","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40623-023-01898-1","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Quasi-periodic (QP) emissions are a type of magnetospheric ELF/VLF waves characterized by a periodic intensity modulation ranging from tens of seconds to several minutes. Here, we present 63 QP events observed between January 2017 and December 2018. Initially detected at the VLF receiver in Kannuslehto, Finland (KAN, MLAT = 67.7°N, L = 5.5), we proceeded to check whether these events were simultaneously observed at other subauroral receivers. To do so we used the following PWING stations: Athabasca (ATH, MLAT = 61.2°N, L = 4.3, Canada), Gakona (GAK, MLAT = 63.6°N, L = 4.9, Alaska), Husafell (HUS, MLAT = 64.9°N, L = 5.6, Iceland), Istok (IST, MLAT = 60.6°N, L = 6.0, Russia), Kapuskasing (KAP, MLAT = 58.7°N, L = 3.8, Canada), Maimaga (MAM, MLAT = 58.0°N, L = 3.6, Russia), and Nain (NAI, MLAT = 65.8°N, L = 5.0, Canada). We found that: (1) QP emissions detected at KAN had a relatively longer observation time (1–10 h) than other stations, (2) 11.3% of the emissions at KAN were observed showing one-to-one correspondence at IST, and (3) no station other than IST simultaneously observed the same QP emission as KAN. Since KAN and IST are longitudinally separated by 60.6°, we estimate that the maximum meridional spread of conjugated QP emissions should be close to 60° or 4 MLT. Comparison with geomagnetic data shows half of the events are categorized as type II, while the rest are mixed (type I and II). This study is the first to clarify the longitudinal spread of QP waves observed on the ground by analyzing simultaneous observations over 2 years using multiple ground stations. Graphical Abstract
期刊介绍:
Earth, Planets and Space (EPS) covers scientific articles in Earth and Planetary Sciences, particularly geomagnetism, aeronomy, space science, seismology, volcanology, geodesy, and planetary science. EPS also welcomes articles in new and interdisciplinary subjects, including instrumentations. Only new and original contents will be accepted for publication.