NiFe2O4 nanoparticles for non-volatile bipolar resistive switching memory device

IF 1.9 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Rohini P Patil, Ankita Shrikant Nikam, Shivanand Teli, Ashkan Vakilipour Takaloo, Rajanish K. Kamat, Tukaram D. Dongale, Pradip Kamble, Kalyanrao Garadkar K M
{"title":"NiFe2O4 nanoparticles for non-volatile bipolar resistive switching memory device","authors":"Rohini P Patil, Ankita Shrikant Nikam, Shivanand Teli, Ashkan Vakilipour Takaloo, Rajanish K. Kamat, Tukaram D. Dongale, Pradip Kamble, Kalyanrao Garadkar K M","doi":"10.1088/1361-6641/ad04eb","DOIUrl":null,"url":null,"abstract":"Abstract The existing work addresses the chemical synthesis of NiFe2O4 (NFO) nanoparticles (NPs) with the help of PVP as a capping agent and NiFe2O4 NPs are used as a switching layer material in memory device. For the confirmation of the materials phase, composition, and optical properties, various analytical techniques were used. By the support of the X-ray diffraction (XRD) technique, crystal structure (cubic spinel) and crystallite size (20.12 nm) were determined. Field emission scanning electron microscopy (FE-SEM) was used to confirm the material morphology. Raman Spectroscopy and Fourier Transform Infrared Spectroscopy (FT-IR) were applied to identify the of NiFe2O4 NPs functional groups. For the non-volatile memory device , Ag/NFO/FTO was fabricated, which shows bipolar resistive switching with good endurance (104 cycles) and retention (6 x 103 s). The I–V characteristics of the actual device indicates that the deposition order of the film is a decisive part in the device performance. Moreover, the conduction and resistive switching mechanism of the device were also carried out.","PeriodicalId":21585,"journal":{"name":"Semiconductor Science and Technology","volume":"30 1","pages":"0"},"PeriodicalIF":1.9000,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Semiconductor Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1361-6641/ad04eb","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract The existing work addresses the chemical synthesis of NiFe2O4 (NFO) nanoparticles (NPs) with the help of PVP as a capping agent and NiFe2O4 NPs are used as a switching layer material in memory device. For the confirmation of the materials phase, composition, and optical properties, various analytical techniques were used. By the support of the X-ray diffraction (XRD) technique, crystal structure (cubic spinel) and crystallite size (20.12 nm) were determined. Field emission scanning electron microscopy (FE-SEM) was used to confirm the material morphology. Raman Spectroscopy and Fourier Transform Infrared Spectroscopy (FT-IR) were applied to identify the of NiFe2O4 NPs functional groups. For the non-volatile memory device , Ag/NFO/FTO was fabricated, which shows bipolar resistive switching with good endurance (104 cycles) and retention (6 x 103 s). The I–V characteristics of the actual device indicates that the deposition order of the film is a decisive part in the device performance. Moreover, the conduction and resistive switching mechanism of the device were also carried out.
非易失性双极电阻开关存储器件用NiFe2O4纳米颗粒
以PVP为封盖剂,化学合成了NiFe2O4纳米粒子(NPs),并将其用作存储器件的开关层材料。为了确定材料的相、组成和光学性质,使用了各种分析技术。在x射线衍射(XRD)技术的支持下,测定了晶体结构(立方尖晶石)和晶粒尺寸(20.12 nm)。采用场发射扫描电镜(FE-SEM)对材料形貌进行了表征。利用拉曼光谱和傅里叶变换红外光谱(FT-IR)对NiFe2O4 NPs的官能团进行了鉴定。对于非易失性存储器件,制备了Ag/NFO/FTO,其双极电阻开关具有良好的续航时间(104次循环)和保持时间(6 x 103 s)。实际器件的I-V特性表明,薄膜的沉积顺序是器件性能的决定性因素。此外,还研究了该器件的导通和电阻开关机理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Semiconductor Science and Technology
Semiconductor Science and Technology 工程技术-材料科学:综合
CiteScore
4.30
自引率
5.30%
发文量
216
审稿时长
2.4 months
期刊介绍: Devoted to semiconductor research, Semiconductor Science and Technology''s multidisciplinary approach reflects the far-reaching nature of this topic. The scope of the journal covers fundamental and applied experimental and theoretical studies of the properties of non-organic, organic and oxide semiconductors, their interfaces and devices, including: fundamental properties materials and nanostructures devices and applications fabrication and processing new analytical techniques simulation emerging fields: materials and devices for quantum technologies hybrid structures and devices 2D and topological materials metamaterials semiconductors for energy flexible electronics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信