Evaluation of Customer Default Risk in Tianchi Financial risk

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
None Chuhan Su
{"title":"Evaluation of Customer Default Risk in Tianchi Financial risk","authors":"None Chuhan Su","doi":"10.61173/ry2b9753","DOIUrl":null,"url":null,"abstract":"Based on the PCA(principal component analysis) and logistic regression model, this essay evaluates the default Risk of the borrowers’ information in the Tianchi Financial Risk dataset. The research finds that the default rate is the main factor affecting Tianchi Financial Risk. Combining borrowers’ credit grades with factors influencing the default rate, the logistic regression analysis is conducted. It is concluded that individuals with a step above D have a high risk of default, whereas those with a grade below D have low-risk defaults.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.61173/ry2b9753","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Based on the PCA(principal component analysis) and logistic regression model, this essay evaluates the default Risk of the borrowers’ information in the Tianchi Financial Risk dataset. The research finds that the default rate is the main factor affecting Tianchi Financial Risk. Combining borrowers’ credit grades with factors influencing the default rate, the logistic regression analysis is conducted. It is concluded that individuals with a step above D have a high risk of default, whereas those with a grade below D have low-risk defaults.
天池金融风险中的客户违约风险评价
本文基于主成分分析和logistic回归模型,对天池金融风险数据集中借款人信息的违约风险进行了评估。研究发现,违约率是影响天池金融风险的主要因素。结合借款人信用等级与违约率影响因素,进行logistic回归分析。得出的结论是,D级以上的个体违约风险高,而D级以下的个体违约风险低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信