{"title":"Towards Safe Autonomous Driving: Decision Making with Observation-Robust Reinforcement Learning","authors":"Xiangkun He, Chen Lv","doi":"10.1007/s42154-023-00256-x","DOIUrl":null,"url":null,"abstract":"<div><p>Most real-world situations involve unavoidable measurement noises or perception errors which result in unsafe decision making or even casualty in autonomous driving. To address these issues and further improve safety, automated driving is required to be capable of handling perception uncertainties. Here, this paper presents an observation-robust reinforcement learning against observational uncertainties to realize safe decision making for autonomous vehicles. Specifically, an adversarial agent is trained online to generate optimal adversarial attacks on observations, which attempts to amplify the average variation distance on perturbed policies. In addition, an observation-robust actor-critic approach is developed to enable the agent to learn the optimal policies and ensure that the changes of the policies perturbed by optimal adversarial attacks remain within a certain bound. Lastly, the safe decision making scheme is evaluated on a lane change task under complex highway traffic scenarios. The results show that the developed approach can ensure autonomous driving performance, as well as the policy robustness against adversarial attacks on observations.</p></div>","PeriodicalId":36310,"journal":{"name":"Automotive Innovation","volume":"6 4","pages":"509 - 520"},"PeriodicalIF":4.8000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42154-023-00256-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automotive Innovation","FirstCategoryId":"1087","ListUrlMain":"https://link.springer.com/article/10.1007/s42154-023-00256-x","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Most real-world situations involve unavoidable measurement noises or perception errors which result in unsafe decision making or even casualty in autonomous driving. To address these issues and further improve safety, automated driving is required to be capable of handling perception uncertainties. Here, this paper presents an observation-robust reinforcement learning against observational uncertainties to realize safe decision making for autonomous vehicles. Specifically, an adversarial agent is trained online to generate optimal adversarial attacks on observations, which attempts to amplify the average variation distance on perturbed policies. In addition, an observation-robust actor-critic approach is developed to enable the agent to learn the optimal policies and ensure that the changes of the policies perturbed by optimal adversarial attacks remain within a certain bound. Lastly, the safe decision making scheme is evaluated on a lane change task under complex highway traffic scenarios. The results show that the developed approach can ensure autonomous driving performance, as well as the policy robustness against adversarial attacks on observations.
期刊介绍:
Automotive Innovation is dedicated to the publication of innovative findings in the automotive field as well as other related disciplines, covering the principles, methodologies, theoretical studies, experimental studies, product engineering and engineering application. The main topics include but are not limited to: energy-saving, electrification, intelligent and connected, new energy vehicle, safety and lightweight technologies. The journal presents the latest trend and advances of automotive technology.