{"title":"Curcumin-Loaded nano-phospholipid complex maintains mitochondrial homeostasis through regulation of parkin in Parkinson’s disease","authors":"Hejie Xie, Dajin Zhou, Tielun Yan, Xiumei Yan, Qiulin Wu, Weifeng Chen","doi":"10.1166/mex.2023.2495","DOIUrl":null,"url":null,"abstract":"Curcumin (Cur) can modulate multiple signal transductions and play a protective role in Parkinson’s disease (PD). Nano-phospholipid composite carriers were prepared to observe the nano-phospholipid complex EM maps, and then evaluated the size and surface potential of the composites using a Zetasizer IV analyzer. Microglial cells (BV2) were divided into control group, empty vector group, Cur group and drug-loaded group and administered treatment, respectively. The levels of Parkin, BAG5 and PINK1 were detected. With encapsulation efficiency of 26.0% and drug loading of 52.0%, respectively, the average particle size of the Cur-loaded nano-phospholipid was (197.15±4.42) nm, with a potential of (−18.2±2.0) mV. The difference between empty vector group and control group in the level of BAG5, Parkin and PINK1 was not significant ( P >0.05). BAG5 level increased significantly upon treatment with Cur or Cur-loaded nano-phospholipid complex, with highest level in the drug-loaded group ( P <0.05). As such, Parkin and PINK1 expression increased greatly in the presence of Cur or Cur-loaded nano-phospholipid complex, while the drug-loaded group had the highest level ( P <0.05). Collectively, the curcumin/nano-phospholipid complexes upregulated Parkin, PINK1 and BAG5 expression, thereby maintaining mitochondria and potentiating the efficacy of Cur on PD. The Cur-loaded nano-phospholipid complexes show promising potential for PD prevention and treatment.","PeriodicalId":18318,"journal":{"name":"Materials Express","volume":"42 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1166/mex.2023.2495","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0
Abstract
Curcumin (Cur) can modulate multiple signal transductions and play a protective role in Parkinson’s disease (PD). Nano-phospholipid composite carriers were prepared to observe the nano-phospholipid complex EM maps, and then evaluated the size and surface potential of the composites using a Zetasizer IV analyzer. Microglial cells (BV2) were divided into control group, empty vector group, Cur group and drug-loaded group and administered treatment, respectively. The levels of Parkin, BAG5 and PINK1 were detected. With encapsulation efficiency of 26.0% and drug loading of 52.0%, respectively, the average particle size of the Cur-loaded nano-phospholipid was (197.15±4.42) nm, with a potential of (−18.2±2.0) mV. The difference between empty vector group and control group in the level of BAG5, Parkin and PINK1 was not significant ( P >0.05). BAG5 level increased significantly upon treatment with Cur or Cur-loaded nano-phospholipid complex, with highest level in the drug-loaded group ( P <0.05). As such, Parkin and PINK1 expression increased greatly in the presence of Cur or Cur-loaded nano-phospholipid complex, while the drug-loaded group had the highest level ( P <0.05). Collectively, the curcumin/nano-phospholipid complexes upregulated Parkin, PINK1 and BAG5 expression, thereby maintaining mitochondria and potentiating the efficacy of Cur on PD. The Cur-loaded nano-phospholipid complexes show promising potential for PD prevention and treatment.