Sen Chen, Jiaxuan Ren, Douhao Yang, Lijun Sang, Bowen Liu, Qiang Chen, Zhongwei Liu
{"title":"Plasma enhanced atomic layer deposition of manganese nitride thin film from manganese amidinate and ammonia plasma","authors":"Sen Chen, Jiaxuan Ren, Douhao Yang, Lijun Sang, Bowen Liu, Qiang Chen, Zhongwei Liu","doi":"10.1116/6.0002484","DOIUrl":null,"url":null,"abstract":"Manganese nitride films have been successfully fabricated by the technique of plasma enhanced atomic layer deposition (PEALD). The process employed bis(N,N'-di-tert-butylacetamidinate)manganese [Mn(amd)2] as manganese precursor and ammonia plasma as a coreactant. With a typical PEALD process cycle of 5 s Mn(amd)2 pulse, 10 s Ar purge pulse, 10 s NH3 plasma exposure, 10 s Ar purge pulse, 80 °C deposition temperature, and 60 W input power, the deposited film is continuous and smooth with a growth rate is 0.037 nm/cycle. Based on x-ray diffraction measurement, the film is determined to be η-Mn3N2 crystal structure. The primary deposition mechanism has been investigated by in situ optical emission spectroscopy and quartz crystal microbalance. The deposited manganese nitride film shows an excellent barrier performance against copper diffusion at insulator/copper interface.","PeriodicalId":17490,"journal":{"name":"Journal of Vacuum Science & Technology A","volume":"4 1","pages":"0"},"PeriodicalIF":2.4000,"publicationDate":"2023-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vacuum Science & Technology A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1116/6.0002484","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0
Abstract
Manganese nitride films have been successfully fabricated by the technique of plasma enhanced atomic layer deposition (PEALD). The process employed bis(N,N'-di-tert-butylacetamidinate)manganese [Mn(amd)2] as manganese precursor and ammonia plasma as a coreactant. With a typical PEALD process cycle of 5 s Mn(amd)2 pulse, 10 s Ar purge pulse, 10 s NH3 plasma exposure, 10 s Ar purge pulse, 80 °C deposition temperature, and 60 W input power, the deposited film is continuous and smooth with a growth rate is 0.037 nm/cycle. Based on x-ray diffraction measurement, the film is determined to be η-Mn3N2 crystal structure. The primary deposition mechanism has been investigated by in situ optical emission spectroscopy and quartz crystal microbalance. The deposited manganese nitride film shows an excellent barrier performance against copper diffusion at insulator/copper interface.
利用等离子体增强原子层沉积(PEALD)技术成功制备了氮化锰薄膜。该工艺以双(N,N'-二叔丁基乙脒)锰[Mn(amd)2]为锰前驱体,氨血浆为反应物。在5 s Mn(amd)2脉冲、10 s Ar吹扫脉冲、10 s NH3等离子体暴露、10 s Ar吹扫脉冲、80℃沉积温度、60 W输入功率的典型PEALD工艺周期下,沉积膜连续光滑,生长速度为0.037 nm/周期。通过x射线衍射测定,确定薄膜为η-Mn3N2晶体结构。利用原位发射光谱和石英晶体微天平研究了初沉积机理。沉积的氮化锰薄膜在绝缘子/铜界面对铜的扩散具有良好的阻隔性能。
期刊介绍:
Journal of Vacuum Science & Technology A publishes reports of original research, letters, and review articles that focus on fundamental scientific understanding of interfaces, surfaces, plasmas and thin films and on using this understanding to advance the state-of-the-art in various technological applications.