Andromeda Dwi Laksono, Chih-Ming Chen, Yee-Wen Yen
{"title":"Interfacial reactions in the Sn-9.0 wt.% Zn/Cu-Ti alloy (C1990 HP) couple","authors":"Andromeda Dwi Laksono, Chih-Ming Chen, Yee-Wen Yen","doi":"10.1108/ssmt-05-2023-0027","DOIUrl":null,"url":null,"abstract":"Purpose The purpose of this study was to examine the influence of adding a small amount of Ti to a Cu-based alloy, specifically the commercial Hyper Titanium Copper alloy (C1990 HP), which contains Cu-3.28 wt.% Ti, on its interfacial reaction with Sn-9.0 wt.% Zn (SnZn) solder, using the liquid/solid reaction couple technique. Design/methodology/approach The SnZn/C1990 HP couples were subjected to a reaction temperature of 240–270°C for a duration of 0.5–5 h. The resulting reaction couple was characterized using a scanning electron microscope, energy dispersive spectrometer, electron probe microanalyzer and X-ray diffractometer. Findings It was observed that the scallop-shaped CuZn5 and planar Cu5Zn8 phases were formed in almost all SnZn/C1990 HP couples. With increased reaction duration and temperature, the Cu-rich intermetallic compound (IMC)-Cu5Zn8 phase became a dominant IMC formed at the interface. The total thickness of the IMCs was increased with the increase in the reaction duration and temperature. The IMC growth obeyed the parabolic law, and the IMC growth mechanism was diffusion controlled. The activation energy of the SnZn/C1990 HP couple was 64.71 kJ/mol. Originality/value This article presents an analysis of the IMC thickness in each sample using ImageJ software, followed by kinetic analysis using Origin software at various reaction temperatures of SnZn/C1990 HP in liquid/solid couples. The study also includes detailed reports on the morphology, interface composition and X-ray diffraction analysis, as well as the activation energy. The findings can serve as a valuable reference for electronic packaging companies that utilize C1990 HP substrates.","PeriodicalId":49499,"journal":{"name":"Soldering & Surface Mount Technology","volume":"48 1","pages":"0"},"PeriodicalIF":1.7000,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soldering & Surface Mount Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/ssmt-05-2023-0027","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose The purpose of this study was to examine the influence of adding a small amount of Ti to a Cu-based alloy, specifically the commercial Hyper Titanium Copper alloy (C1990 HP), which contains Cu-3.28 wt.% Ti, on its interfacial reaction with Sn-9.0 wt.% Zn (SnZn) solder, using the liquid/solid reaction couple technique. Design/methodology/approach The SnZn/C1990 HP couples were subjected to a reaction temperature of 240–270°C for a duration of 0.5–5 h. The resulting reaction couple was characterized using a scanning electron microscope, energy dispersive spectrometer, electron probe microanalyzer and X-ray diffractometer. Findings It was observed that the scallop-shaped CuZn5 and planar Cu5Zn8 phases were formed in almost all SnZn/C1990 HP couples. With increased reaction duration and temperature, the Cu-rich intermetallic compound (IMC)-Cu5Zn8 phase became a dominant IMC formed at the interface. The total thickness of the IMCs was increased with the increase in the reaction duration and temperature. The IMC growth obeyed the parabolic law, and the IMC growth mechanism was diffusion controlled. The activation energy of the SnZn/C1990 HP couple was 64.71 kJ/mol. Originality/value This article presents an analysis of the IMC thickness in each sample using ImageJ software, followed by kinetic analysis using Origin software at various reaction temperatures of SnZn/C1990 HP in liquid/solid couples. The study also includes detailed reports on the morphology, interface composition and X-ray diffraction analysis, as well as the activation energy. The findings can serve as a valuable reference for electronic packaging companies that utilize C1990 HP substrates.
期刊介绍:
Soldering & Surface Mount Technology seeks to make an important contribution to the advancement of research and application within the technical body of knowledge and expertise in this vital area. Soldering & Surface Mount Technology compliments its sister publications; Circuit World and Microelectronics International.
The journal covers all aspects of SMT from alloys, pastes and fluxes, to reliability and environmental effects, and is currently providing an important dissemination route for new knowledge on lead-free solders and processes. The journal comprises a multidisciplinary study of the key materials and technologies used to assemble state of the art functional electronic devices. The key focus is on assembling devices and interconnecting components via soldering, whilst also embracing a broad range of related approaches.