Shengkuo Zhang, Hongliang Wang, Peng Zhang, Gang Cao
{"title":"High performance SAW resonator with spurious mode suppression using double-layer electrode transverse modulation","authors":"Shengkuo Zhang, Hongliang Wang, Peng Zhang, Gang Cao","doi":"10.1088/1361-6641/ad06c0","DOIUrl":null,"url":null,"abstract":"Abstract This work aims to solve the problem of tradeoff between various properties and spurious mode suppression in surface acoustic wave (SAW) resonators. A high-angle rotated Y -cut LiNbO 3 (LN)/SiO 2 /Si multilayered structure was proposed to balance the electromechanical coupling coefficient ( K 2 ) and temperature coefficient of frequency ( TCF ), and the propagation characteristics of Rayleigh mode were simulated by the finite element method. For the widely existing spurious modes, the shear-horizontal wave and longitudinal modes were eliminated by optimizing the cut angle of LN and electrode thickness, and a method of double-layer electrode transverse modulation was proposed to suppress the transverse modes. This method reduces the mass loading effect by replacing the electrode from Cu to Cu/Al. Moreover, the Al thicknesses in different regions are changed to perform the transverse modulation, and thus a widespread suppression of transverse modes is achieved by exciting the piston mode and enhancing the energy constraint, with a significant improvement on quality factor at the resonance frequency. Eventually, the spurious-free SAW resonator has the K 2 of 9.5% and the TCF close to zero. This work provides a feasible scheme for the design of high performance SAW resonators with spurious mode suppression.","PeriodicalId":21585,"journal":{"name":"Semiconductor Science and Technology","volume":"60 11","pages":"0"},"PeriodicalIF":1.9000,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Semiconductor Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1361-6641/ad06c0","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract This work aims to solve the problem of tradeoff between various properties and spurious mode suppression in surface acoustic wave (SAW) resonators. A high-angle rotated Y -cut LiNbO 3 (LN)/SiO 2 /Si multilayered structure was proposed to balance the electromechanical coupling coefficient ( K 2 ) and temperature coefficient of frequency ( TCF ), and the propagation characteristics of Rayleigh mode were simulated by the finite element method. For the widely existing spurious modes, the shear-horizontal wave and longitudinal modes were eliminated by optimizing the cut angle of LN and electrode thickness, and a method of double-layer electrode transverse modulation was proposed to suppress the transverse modes. This method reduces the mass loading effect by replacing the electrode from Cu to Cu/Al. Moreover, the Al thicknesses in different regions are changed to perform the transverse modulation, and thus a widespread suppression of transverse modes is achieved by exciting the piston mode and enhancing the energy constraint, with a significant improvement on quality factor at the resonance frequency. Eventually, the spurious-free SAW resonator has the K 2 of 9.5% and the TCF close to zero. This work provides a feasible scheme for the design of high performance SAW resonators with spurious mode suppression.
期刊介绍:
Devoted to semiconductor research, Semiconductor Science and Technology''s multidisciplinary approach reflects the far-reaching nature of this topic.
The scope of the journal covers fundamental and applied experimental and theoretical studies of the properties of non-organic, organic and oxide semiconductors, their interfaces and devices, including:
fundamental properties
materials and nanostructures
devices and applications
fabrication and processing
new analytical techniques
simulation
emerging fields:
materials and devices for quantum technologies
hybrid structures and devices
2D and topological materials
metamaterials
semiconductors for energy
flexible electronics.