Graphical models for nonstationary time series

IF 3.2 1区 数学 Q1 STATISTICS & PROBABILITY
Sumanta Basu, Suhasini Subba Rao
{"title":"Graphical models for nonstationary time series","authors":"Sumanta Basu, Suhasini Subba Rao","doi":"10.1214/22-aos2205","DOIUrl":null,"url":null,"abstract":"We propose NonStGM, a general nonparametric graphical modeling framework, for studying dynamic associations among the components of a nonstationary multivariate time series. It builds on the framework of Gaussian graphical models (GGM) and stationary time series graphical models (StGM) and complements existing works on parametric graphical models based on change point vector autoregressions (VAR). Analogous to StGM, the proposed framework captures conditional noncorrelations (both intertemporal and contemporaneous) in the form of an undirected graph. In addition, to describe the more nuanced nonstationary relationships among the components of the time series, we introduce the new notion of conditional nonstationarity/stationarity and incorporate it within the graph. This can be used to search for small subnetworks that serve as the “source” of nonstationarity in a large system. We explicitly connect conditional noncorrelation and stationarity between and within components of the multivariate time series to zero and Toeplitz embeddings of an infinite-dimensional inverse covariance operator. In the Fourier domain, conditional stationarity and noncorrelation relationships in the inverse covariance operator are encoded with a specific sparsity structure of its integral kernel operator. We show that these sparsity patterns can be recovered from finite-length time series by nodewise regression of discrete Fourier transforms (DFT) across different Fourier frequencies. We demonstrate the feasibility of learning NonStGM structure from data using simulation studies.","PeriodicalId":8032,"journal":{"name":"Annals of Statistics","volume":"60 1","pages":"0"},"PeriodicalIF":3.2000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/22-aos2205","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 2

Abstract

We propose NonStGM, a general nonparametric graphical modeling framework, for studying dynamic associations among the components of a nonstationary multivariate time series. It builds on the framework of Gaussian graphical models (GGM) and stationary time series graphical models (StGM) and complements existing works on parametric graphical models based on change point vector autoregressions (VAR). Analogous to StGM, the proposed framework captures conditional noncorrelations (both intertemporal and contemporaneous) in the form of an undirected graph. In addition, to describe the more nuanced nonstationary relationships among the components of the time series, we introduce the new notion of conditional nonstationarity/stationarity and incorporate it within the graph. This can be used to search for small subnetworks that serve as the “source” of nonstationarity in a large system. We explicitly connect conditional noncorrelation and stationarity between and within components of the multivariate time series to zero and Toeplitz embeddings of an infinite-dimensional inverse covariance operator. In the Fourier domain, conditional stationarity and noncorrelation relationships in the inverse covariance operator are encoded with a specific sparsity structure of its integral kernel operator. We show that these sparsity patterns can be recovered from finite-length time series by nodewise regression of discrete Fourier transforms (DFT) across different Fourier frequencies. We demonstrate the feasibility of learning NonStGM structure from data using simulation studies.
非平稳时间序列的图形模型
我们提出了一个通用的非参数图形建模框架NonStGM,用于研究非平稳多元时间序列中各分量之间的动态关联。它建立在高斯图形模型(GGM)和平稳时间序列图形模型(StGM)的框架上,并补充了基于变化点向量自回归(VAR)的参数化图形模型的现有工作。与StGM类似,所提出的框架以无向图的形式捕获条件非相关性(跨时间和同期)。此外,为了描述时间序列组成部分之间更细微的非平稳关系,我们引入了条件非平稳/平稳性的新概念,并将其纳入图中。这可以用于搜索作为大型系统中非平稳性“源”的小子网。我们明确地将多元时间序列分量之间和分量内的条件非相关和平稳性与零和无限维逆协方差算子的Toeplitz嵌入联系起来。在傅里叶域中,用其积分核算子的特定稀疏性结构对协方差逆算子中的条件平稳和非相关关系进行编码。我们展示了这些稀疏模式可以通过跨不同傅立叶频率的离散傅立叶变换(DFT)的节点回归从有限长度时间序列中恢复。我们通过仿真研究证明了从数据中学习非stgm结构的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Statistics
Annals of Statistics 数学-统计学与概率论
CiteScore
9.30
自引率
8.90%
发文量
119
审稿时长
6-12 weeks
期刊介绍: The Annals of Statistics aim to publish research papers of highest quality reflecting the many facets of contemporary statistics. Primary emphasis is placed on importance and originality, not on formalism. The journal aims to cover all areas of statistics, especially mathematical statistics and applied & interdisciplinary statistics. Of course many of the best papers will touch on more than one of these general areas, because the discipline of statistics has deep roots in mathematics, and in substantive scientific fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信