{"title":"Single index Fréchet regression","authors":"Satarupa Bhattacharjee, Hans-Georg Müller","doi":"10.1214/23-aos2307","DOIUrl":null,"url":null,"abstract":"Single index models provide an effective dimension reduction tool in regression, especially for high-dimensional data, by projecting a general multivariate predictor onto a direction vector. We propose a novel single-index model for regression models where metric space-valued random object responses are coupled with multivariate Euclidean predictors. The responses in this regression model include complex, non-Euclidean data, including covariance matrices, graph Laplacians of networks and univariate probability distribution functions, among other complex objects that lie in abstract metric spaces. While Fréchet regression has proved useful for modeling the conditional mean of such random objects given multivariate Euclidean vectors, it does not provide for regression parameters such as slopes or intercepts, since the metric space-valued responses are not amenable to linear operations. As a consequence, distributional results for Fréchet regression have been elusive. We show here that for the case of multivariate Euclidean predictors, the parameters that define a single index and projection vector can be used to substitute for the inherent absence of parameters in Fréchet regression. Specifically, we derive the asymptotic distribution of suitable estimates of these parameters, which then can be utilized to test linear hypotheses for the parameters, subject to an identifiability condition. Consistent estimation of the link function of the single index Fréchet regression model is obtained through local linear Fréchet regression. We demonstrate the finite sample performance of estimation and inference for the proposed single index Fréchet regression model through simulation studies, including the special cases where responses are probability distributions and graph adjacency matrices. The method is illustrated for resting-state functional Magnetic Resonance Imaging (fMRI) data from the ADNI study.","PeriodicalId":8032,"journal":{"name":"Annals of Statistics","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/23-aos2307","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 6
Abstract
Single index models provide an effective dimension reduction tool in regression, especially for high-dimensional data, by projecting a general multivariate predictor onto a direction vector. We propose a novel single-index model for regression models where metric space-valued random object responses are coupled with multivariate Euclidean predictors. The responses in this regression model include complex, non-Euclidean data, including covariance matrices, graph Laplacians of networks and univariate probability distribution functions, among other complex objects that lie in abstract metric spaces. While Fréchet regression has proved useful for modeling the conditional mean of such random objects given multivariate Euclidean vectors, it does not provide for regression parameters such as slopes or intercepts, since the metric space-valued responses are not amenable to linear operations. As a consequence, distributional results for Fréchet regression have been elusive. We show here that for the case of multivariate Euclidean predictors, the parameters that define a single index and projection vector can be used to substitute for the inherent absence of parameters in Fréchet regression. Specifically, we derive the asymptotic distribution of suitable estimates of these parameters, which then can be utilized to test linear hypotheses for the parameters, subject to an identifiability condition. Consistent estimation of the link function of the single index Fréchet regression model is obtained through local linear Fréchet regression. We demonstrate the finite sample performance of estimation and inference for the proposed single index Fréchet regression model through simulation studies, including the special cases where responses are probability distributions and graph adjacency matrices. The method is illustrated for resting-state functional Magnetic Resonance Imaging (fMRI) data from the ADNI study.
期刊介绍:
The Annals of Statistics aim to publish research papers of highest quality reflecting the many facets of contemporary statistics. Primary emphasis is placed on importance and originality, not on formalism. The journal aims to cover all areas of statistics, especially mathematical statistics and applied & interdisciplinary statistics. Of course many of the best papers will touch on more than one of these general areas, because the discipline of statistics has deep roots in mathematics, and in substantive scientific fields.