{"title":"Forecasting of the true satellite carbon monoxide data with ensemble empirical mode decomposition, singular value decomposition and moving average","authors":"Sameer Poongadan, M. C. Lineesh","doi":"10.1080/02664763.2023.2277115","DOIUrl":null,"url":null,"abstract":"AbstractThe forecasting of carbon monoxide in the atmosphere is essential as it causes the pollution of the atmosphere and hence severe health problems for humans. This study proposes a time-series prognosis EEMD-SVD-MA technique which incorporates Ensemble Empirical Mode Decomposition, Singular Value Decomposition and Moving Average, to predict the prospects of carbon monoxide data taken from the Indian region. The collected data are non-linear. The technique can be applied for non-stationary and non-linear data. In this approach, there are three levels: EEMD level, SVD level and MA level. The first level deploys EEMD to fragment data series into a limited number of Intrinsic Mode Function (IMF) components along with a residue. To denoise each IMF component, SVD is deployed in the second level. In the third level, each denoised IMF component is predicted by MA. The future values of the original data are obtained by adding all the predicted series of the components. In this study, we proposed two variants of the model: EEMD-SVD-MA(3) and EEMD-SVD-MA(4) and compared the results with other forecasting techniques, namely LSTM (Long Short Term Memory network), EMD-LSTM, EMD-MA, EEMD-MA and CEEMDAN-MA. The results show that the proposed EEMD-SVD-MA model is more efficient than other models.Keywords: Intrinsic mode functionempirical mode decompositionensemble empirical mode decompositionsingular value decompositionmoving averagelong short term memory networkMathematics Subject Classifications: 37M1068T0715A18 AcknowledgmentsThe author's deep appreciation goes out to NASA's teams for AIRS/AMSU, MODIS and MOPPIT data for tropospheric CO.Disclosure statementNo potential conflict of interest was reported by the author(s).","PeriodicalId":15239,"journal":{"name":"Journal of Applied Statistics","volume":"29 8","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/02664763.2023.2277115","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
AbstractThe forecasting of carbon monoxide in the atmosphere is essential as it causes the pollution of the atmosphere and hence severe health problems for humans. This study proposes a time-series prognosis EEMD-SVD-MA technique which incorporates Ensemble Empirical Mode Decomposition, Singular Value Decomposition and Moving Average, to predict the prospects of carbon monoxide data taken from the Indian region. The collected data are non-linear. The technique can be applied for non-stationary and non-linear data. In this approach, there are three levels: EEMD level, SVD level and MA level. The first level deploys EEMD to fragment data series into a limited number of Intrinsic Mode Function (IMF) components along with a residue. To denoise each IMF component, SVD is deployed in the second level. In the third level, each denoised IMF component is predicted by MA. The future values of the original data are obtained by adding all the predicted series of the components. In this study, we proposed two variants of the model: EEMD-SVD-MA(3) and EEMD-SVD-MA(4) and compared the results with other forecasting techniques, namely LSTM (Long Short Term Memory network), EMD-LSTM, EMD-MA, EEMD-MA and CEEMDAN-MA. The results show that the proposed EEMD-SVD-MA model is more efficient than other models.Keywords: Intrinsic mode functionempirical mode decompositionensemble empirical mode decompositionsingular value decompositionmoving averagelong short term memory networkMathematics Subject Classifications: 37M1068T0715A18 AcknowledgmentsThe author's deep appreciation goes out to NASA's teams for AIRS/AMSU, MODIS and MOPPIT data for tropospheric CO.Disclosure statementNo potential conflict of interest was reported by the author(s).
期刊介绍:
Journal of Applied Statistics provides a forum for communication between both applied statisticians and users of applied statistical techniques across a wide range of disciplines. These areas include business, computing, economics, ecology, education, management, medicine, operational research and sociology, but papers from other areas are also considered. The editorial policy is to publish rigorous but clear and accessible papers on applied techniques. Purely theoretical papers are avoided but those on theoretical developments which clearly demonstrate significant applied potential are welcomed. Each paper is submitted to at least two independent referees.