Computational prediction of protein–protein interactions’ network in Arabidopsis thaliana

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Zhale Hekmati, Javad Zahiri, Ali Aalami
{"title":"Computational prediction of protein–protein interactions’ network in Arabidopsis thaliana","authors":"Zhale Hekmati,&nbsp;Javad Zahiri,&nbsp;Ali Aalami","doi":"10.1007/s11738-023-03623-7","DOIUrl":null,"url":null,"abstract":"<div><p>The study of protein–protein interactions (PPIs) has been a major factor in understanding the function of proteins. The development of diverse methodologies currently facilitates the identification of novel or uncharacterized PPIs. Despite advancements in other species, there is no complete interactome map for plants. Therefore, sketching an interactome map based on the interolog method using a large number of species will further our understanding in this field. We employed interolog to develop the Arabidopsis PPI network (PPIN) in the current investigation. We used data from 273 species to construct our PPIN by collecting experimentally reported PPIs from databases (IntAct, BioGrid, Mint, and DIP) and then using InParanoid to identify the orthologous proteins. The final Arabidopsis predicted PPIN consisted of 526,367 interactions between 10 and 105 proteins. The final PPIN was constructed based on the selection of reliable data sources, and a threshold was applied to filter predicted interactions to reach 289,909 interactions. We believe this predicted PPIN can contribute to ongoing research and provide an excellent opportunity for plant interactomic studies. In addition, the availability of Arabidopsis PPIN increases knowledge at the protein level, facilitates a better understanding of signal transduction pathways, and enables the identification of new proteins involved in unique processes.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s11738-023-03623-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

The study of protein–protein interactions (PPIs) has been a major factor in understanding the function of proteins. The development of diverse methodologies currently facilitates the identification of novel or uncharacterized PPIs. Despite advancements in other species, there is no complete interactome map for plants. Therefore, sketching an interactome map based on the interolog method using a large number of species will further our understanding in this field. We employed interolog to develop the Arabidopsis PPI network (PPIN) in the current investigation. We used data from 273 species to construct our PPIN by collecting experimentally reported PPIs from databases (IntAct, BioGrid, Mint, and DIP) and then using InParanoid to identify the orthologous proteins. The final Arabidopsis predicted PPIN consisted of 526,367 interactions between 10 and 105 proteins. The final PPIN was constructed based on the selection of reliable data sources, and a threshold was applied to filter predicted interactions to reach 289,909 interactions. We believe this predicted PPIN can contribute to ongoing research and provide an excellent opportunity for plant interactomic studies. In addition, the availability of Arabidopsis PPIN increases knowledge at the protein level, facilitates a better understanding of signal transduction pathways, and enables the identification of new proteins involved in unique processes.

Abstract Image

拟南芥蛋白-蛋白相互作用网络的计算预测
蛋白质-蛋白质相互作用(PPIs)的研究已经成为理解蛋白质功能的一个重要因素。目前,各种方法的发展有助于识别新的或未表征的ppi。尽管在其他物种中取得了进步,但在植物中没有完整的相互作用组图谱。因此,利用大量物种的interology方法绘制相互作用组图将进一步加深我们对这一领域的认识。在本研究中,我们利用interology技术建立了拟南芥PPI网络(PPIN)。我们利用273个物种的数据,通过从数据库(integrity, BioGrid, Mint和DIP)中收集实验报道的PPIN,然后使用InParanoid识别同源蛋白来构建我们的PPIN。最终的拟南芥预测PPIN由10到105个蛋白之间的526,367个相互作用组成。在选择可靠数据源的基础上构建最终的PPIN,并应用阈值对预测交互进行过滤,达到289,909个交互。我们相信这一预测的PPIN可以为正在进行的研究做出贡献,并为植物相互作用的研究提供了很好的机会。此外,拟南芥PPIN的可用性增加了对蛋白质水平的认识,促进了对信号转导途径的更好理解,并使鉴定参与独特过程的新蛋白质成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信