Pressure-induced metallic state in a van der Waals cluster Mott insulator Nb3Cl8

IF 10 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
P.F. Shan , X. Han , X. Li , Z.Y. Liu , P.T. Yang , B.S. Wang , J.F. Wang , H.Y. Liu , Y.G. Shi , J.P. Sun , J.-G. Cheng
{"title":"Pressure-induced metallic state in a van der Waals cluster Mott insulator Nb3Cl8","authors":"P.F. Shan ,&nbsp;X. Han ,&nbsp;X. Li ,&nbsp;Z.Y. Liu ,&nbsp;P.T. Yang ,&nbsp;B.S. Wang ,&nbsp;J.F. Wang ,&nbsp;H.Y. Liu ,&nbsp;Y.G. Shi ,&nbsp;J.P. Sun ,&nbsp;J.-G. Cheng","doi":"10.1016/j.mtphys.2023.101267","DOIUrl":null,"url":null,"abstract":"<div><p><span>We report on the pressure-induced metallization<span> of a van der Waals cluster Mott insulator Nb</span></span><sub>3</sub>Cl<sub>8</sub> by employing the resistivity measurements under high pressure. Upon compression, its resistance and energy gap are suppressed gradually with exhibiting the fully metallic state at a critical pressure of <em>P</em><sub>c</sub> ≈ 70 GPa. Hall resistance measurements revealed a significant band-structure reconstruction around <em>P</em><sub>c</sub><span>, where the dominant charge carriers are altered from hole-to electron-type and the carrier concentration experiences a sharp increase in the metallic state. In addition, high-pressure synchrotron<span> XRD measurements uncover a possible structural phase transition around </span></span><em>P</em><sub>c</sub>. Our further first-principles calculations reproduced the pressure-driven structure transition and the corresponding metallic state above <em>P</em><sub>c</sub>. The present study demonstrates a feasible high-pressure route to realize the metallization of cluster Mott insulator Nb<sub>3</sub>Cl<sub>8</sub>.</p></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":"38 ","pages":"Article 101267"},"PeriodicalIF":10.0000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542529323003036","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We report on the pressure-induced metallization of a van der Waals cluster Mott insulator Nb3Cl8 by employing the resistivity measurements under high pressure. Upon compression, its resistance and energy gap are suppressed gradually with exhibiting the fully metallic state at a critical pressure of Pc ≈ 70 GPa. Hall resistance measurements revealed a significant band-structure reconstruction around Pc, where the dominant charge carriers are altered from hole-to electron-type and the carrier concentration experiences a sharp increase in the metallic state. In addition, high-pressure synchrotron XRD measurements uncover a possible structural phase transition around Pc. Our further first-principles calculations reproduced the pressure-driven structure transition and the corresponding metallic state above Pc. The present study demonstrates a feasible high-pressure route to realize the metallization of cluster Mott insulator Nb3Cl8.

范德华簇莫特绝缘体Nb3Cl8的压力诱导金属态
本文报道了一种范德华簇莫特绝缘子Nb3Cl8在高压下的电阻率测量方法。压缩后,其电阻和能隙逐渐被抑制,在Pc≈70 GPa的临界压力下呈现全金属态。霍尔电阻测量结果显示,Pc周围有明显的能带结构重构,主要载流子由空穴型转变为电子型,载流子浓度在金属态下急剧增加。此外,高压同步加速器XRD测量揭示了Pc周围可能存在的结构相变。我们进一步的第一性原理计算再现了Pc以上压力驱动的结构转变和相应的金属态。本研究为实现簇莫特绝缘子Nb3Cl8金属化提供了一条可行的高压途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Today Physics
Materials Today Physics Materials Science-General Materials Science
CiteScore
14.00
自引率
7.80%
发文量
284
审稿时长
15 days
期刊介绍: Materials Today Physics is a multi-disciplinary journal focused on the physics of materials, encompassing both the physical properties and materials synthesis. Operating at the interface of physics and materials science, this journal covers one of the largest and most dynamic fields within physical science. The forefront research in materials physics is driving advancements in new materials, uncovering new physics, and fostering novel applications at an unprecedented pace.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信